Real Seifert form determines the spectrum for semiquasihomogeneous hypersurface singularities in C3

研究成果: Contribution to journalArticle査読

2 被引用数 (Scopus)

抄録

We show that the real Seifert form determines the weights for nondegenerate quasihomogeneous polynomials in C3. Consequently the real Seifert form determines the spectrum for semiquasihomogeneous hypersurface singularities in C3. As a corollary, we obtain the topological invariance of weights for nondegenerate quasihomogeneous polynomials in C3, which has already been proved by the author [Sae1] and independently by Xu and Yau [Ya1], [Ya2], [XY1], [XY2]. The method in this paper is totally different from their approaches and gives some new results, as corollaries, about holomorphic function germs in C3 which are connected by μ-constant deformations to nondegenerate quasihomogeneous polynomials. For example, we show that two semiquasihomogeneous functions of three complex variables have the same topological type if and only if they are connected by a μ-constant deformation.

本文言語英語
ページ(範囲)409-431
ページ数23
ジャーナルJournal of the Mathematical Society of Japan
52
2
DOI
出版ステータス出版済み - 1 1 2000
外部発表はい

All Science Journal Classification (ASJC) codes

  • 数学 (全般)

フィンガープリント

「Real Seifert form determines the spectrum for semiquasihomogeneous hypersurface singularities in C<sup>3</sup>」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル