Real-time nonlinear FEM with neural network for simulating soft organ model deformation.

Ken'ichi Morooka, Xian Chen, Ryo Kurazume, Seiichi Uchida, Kenji Hara, Yumi Iwashita, Makoto Hashizume

研究成果: ジャーナルへの寄稿学術誌査読

抄録

This paper presents a new method for simulating the deformation of organ models by using a neural network. The proposed method is based on the idea proposed by Chen et al. that a deformed model can be estimated from the superposition of basic deformation modes. The neural network finds a relationship between external forces and the models deformed by the forces. The experimental results show that the trained network can achieve a real-time simulation while keeping the acceptable accuracy compared with the nonlinear FEM computation.

本文言語英語
ページ(範囲)742-749
ページ数8
ジャーナルMedical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
11
Pt 2
出版ステータス出版済み - 1月 1 2008

!!!All Science Journal Classification (ASJC) codes

  • 医学(全般)

フィンガープリント

「Real-time nonlinear FEM with neural network for simulating soft organ model deformation.」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル