Recent progress in two-dimensional oxide photocatalysts for water splitting

Shintaro Ida, Tatsumi Ishihara

    研究成果: ジャーナルへの寄稿学術誌査読

    161 被引用数 (Scopus)


    This Perspective focuses on the photocatalytic activity of two-dimensional (2D) oxide and nitrogen-doped oxide crystals and the effective use of 2D photocatalysts for understanding the mechanism of the water splitting reaction. Strategies for improving the activities of 2D photocatalysts are slightly different from those of bulk photocatalysts. Although it is well-known that a photocatalyst without co-catalyst loading has low activity for hydrogen production from water, a certain type of 2D oxide nanosheet shows high activity without co-catalyst loading. It is difficult to determine what factors contribute to this separation of oxidation and reduction sites of water because there are many factors on the reaction surface. A nanosheet p-n junction surface is an ideal surface for understanding the carrier transfer during the photocatalytic reaction. In this system, the driving force of the carrier transfer to the reaction sites was found to be the potential gradient generated by the nanosheet junction.

    ジャーナルJournal of Physical Chemistry Letters
    出版ステータス出版済み - 8月 7 2014

    !!!All Science Journal Classification (ASJC) codes

    • 材料科学(全般)


    「Recent progress in two-dimensional oxide photocatalysts for water splitting」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。