TY - JOUR
T1 - Reconstitution of the oocyte transcriptional network with transcription factors
AU - Hamazaki, Nobuhiko
AU - Kyogoku, Hirohisa
AU - Araki, Hiromitsu
AU - Miura, Fumihito
AU - Horikawa, Chisako
AU - Hamada, Norio
AU - Shimamoto, So
AU - Hikabe, Orie
AU - Nakashima, Kinichi
AU - Kitajima, Tomoya S.
AU - Ito, Takashi
AU - Leitch, Harry G.
AU - Hayashi, Katsuhiko
N1 - Funding Information:
Acknowledgements We thank all members of the Hayashi laboratory for their support and input. We are grateful to F. Arai, T. Matsuda and T. Ishiuchi for technical support and Y. Hayashi for comments. We thank the staff of the Research Support Center, Research Center for Human Disease Modeling, Kyushu University Graduate School of Medical Sciences for their technical assistance; we particularly thank M. Amago for support with the FACS sorting. We are grateful to Y. Hamazaki and KN international for proofreading. This study was supported in part by KAKENHI Grants-in-Aid from MEXT, Japan (numbers 17H01395, 18H05544 and 18H05545 to K.H., 15H06475, 16K18816, 16H06279 and 18K14605 to N. Hamazaki and 16H06527 to K.N.); by Management Expenses Grants of Kyushu University (K.H.); by the Advanced Computational Scientific Program of the Research Institute for Information Technology, Kyushu University; by the Uehara Memorial Foundation (K.H.); by the Takeda Science Foundation (K.H.); by a Hayashi Grant-in-Aid for Basic Medical Research (K.H.); by a JSPS Fellowship (N. Hamazaki); by the Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research) from AMED (JP19am0101103, 1804) (K.H.); by a Grant-in-Aid from The Open Philanthropy Project (K.H.); by MRC core funding (H.G.L.); and by a BBSRC grant (BB/R002703/1) (H.G.L.). H.G.L. is an Academic Clinical Lecturer and acknowledges support from the National Institute for Health Research (NIHR) Imperial Biomedical Research Centre (BRC). The authors apologize to colleagues whose work could not be cited owing to length limitations.
Publisher Copyright:
© 2020, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2021/1/14
Y1 - 2021/1/14
N2 - During female germline development, oocytes become a highly specialized cell type and form a maternal cytoplasmic store of crucial factors. Oocyte growth is triggered at the transition from primordial to primary follicle and is accompanied by dynamic changes in gene expression1, but the gene regulatory network that controls oocyte growth remains unknown. Here we identify a set of transcription factors that are sufficient to trigger oocyte growth. By investigation of the changes in gene expression and functional screening using an in vitro mouse oocyte development system, we identified eight transcription factors, each of which was essential for the transition from primordial to primary follicle. Notably, enforced expression of these transcription factors swiftly converted pluripotent stem cells into oocyte-like cells that were competent for fertilization and subsequent cleavage. These transcription-factor-induced oocyte-like cells were formed without specification of primordial germ cells, epigenetic reprogramming or meiosis, and demonstrate that oocyte growth and lineage-specific de novo DNA methylation are separable from the preceding epigenetic reprogramming in primordial germ cells. This study identifies a core set of transcription factors for orchestrating oocyte growth, and provides an alternative source of ooplasm, which is a unique material for reproductive biology and medicine.
AB - During female germline development, oocytes become a highly specialized cell type and form a maternal cytoplasmic store of crucial factors. Oocyte growth is triggered at the transition from primordial to primary follicle and is accompanied by dynamic changes in gene expression1, but the gene regulatory network that controls oocyte growth remains unknown. Here we identify a set of transcription factors that are sufficient to trigger oocyte growth. By investigation of the changes in gene expression and functional screening using an in vitro mouse oocyte development system, we identified eight transcription factors, each of which was essential for the transition from primordial to primary follicle. Notably, enforced expression of these transcription factors swiftly converted pluripotent stem cells into oocyte-like cells that were competent for fertilization and subsequent cleavage. These transcription-factor-induced oocyte-like cells were formed without specification of primordial germ cells, epigenetic reprogramming or meiosis, and demonstrate that oocyte growth and lineage-specific de novo DNA methylation are separable from the preceding epigenetic reprogramming in primordial germ cells. This study identifies a core set of transcription factors for orchestrating oocyte growth, and provides an alternative source of ooplasm, which is a unique material for reproductive biology and medicine.
UR - http://www.scopus.com/inward/record.url?scp=85097595697&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85097595697&partnerID=8YFLogxK
U2 - 10.1038/s41586-020-3027-9
DO - 10.1038/s41586-020-3027-9
M3 - Article
C2 - 33328630
AN - SCOPUS:85097595697
SN - 0028-0836
VL - 589
SP - 264
EP - 269
JO - Nature
JF - Nature
IS - 7841
ER -