Reconstruction of hidden images using wavelet transform and an entropy-maximization algorithm

Naoto Nakamura, Shigeru Takano, Yoshihiro Okada, Koichi Niijima

研究成果: Contribution to conferencePaper査読

抄録

This paper proposes a blind image separation method using wavelet transform and an entropy-maximization algorithm. Our blind separation algorithm is an improved version of the entropy-maximization algorithms presented by Bell- Sejnowsky and Amari. These algorithms work well for signals having a supergaussian distribution, such as speech and audio. The proposed method is to apply the improved algorithm to the wavelet coefficients of a natural image, whose distribution is close to supergaussian. Our method successfully reconstruct twelve images hidden in another twelve images which are similar each other.

本文言語英語
出版ステータス出版済み - 2006
イベントThe 14th European Signal Processing Conference -
継続期間: 9 4 20069 8 2006

会議

会議The 14th European Signal Processing Conference
Abbreviated titleEUSIPCO 2006
Period9/4/069/8/06

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Electrical and Electronic Engineering

フィンガープリント 「Reconstruction of hidden images using wavelet transform and an entropy-maximization algorithm」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル