Reduction optimal trinomials for efficient software implementation of the ηT pairing

Toshiya Nakajima, Tetsuya Izu, Tsuyoshi Takagi

研究成果: ジャーナルへの寄稿学術誌査読

1 被引用数 (Scopus)


The ηT pairing for supersingular elliptic curves over GF(3m) has been paid attention because of its computational efficiency. Since most computation parts of the ηT pairing are GF(3m) multiplications, it is important to improve the speed of the multiplication when implementing the ηT pairing. In this paper we investigate software implementation of GF(3m) multiplication and propose using irreducible trinomials xm +axk+b over GF(3) such that k is a multiple of w, where w is the bit length of the word of targeted CPU. We call the trinomials "reduction optimal trinomials (ROTs)." ROTs actually exist for several m's and for typical values of w - 16 and 32. We list them for extension degrees m = 97, 167, 193, 239, 317, and 487. These m's are derived from security considerations. Using ROTs, we are able to implement efficient modulo operations (reductions) for GF(3m) multiplication compared with cases in which other types of irreducible trinomials are used (e.g., trinomials with a minimum k for each m). The reason for this is that for cases using ROTs, the number of shift operations on multiple precision data is reduced to less than half compared with cases using other trinomials. Our implementation results show that programs of reduction specialized for PLOTs are 20-30% faster on 32-bit CPU and approximately 40% faster on 16-bit CPU compared with programs using irreducible trinomials with general k.

ジャーナルIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
出版ステータス出版済み - 9月 2008

!!!All Science Journal Classification (ASJC) codes

  • 信号処理
  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • 電子工学および電気工学
  • 応用数学


「Reduction optimal trinomials for efficient software implementation of the ηT pairing」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。