Regular KMS States of Weakly Coupled Anharmonic Crystals and the Resolvent CCR Algebra

Tomohiro Kanda, Taku Matsui

研究成果: 著書/レポートタイプへの貢献

抄録

We consider equilibrium states of weakly coupled anharmonic quantum oscillators(= anharmonic crystal) on an integer lattice Z. We employed standard functional analytic methods for Schrödinger operators and we show existence of the infinite volume limit of equilibrium states, and uniqueness of the regular KMS (Kubo–Martin–Schwinger) states in the frame of Resolvent CCR Algebra introduced by D. Buchholz and H. Grundling.

元の言語英語
ホスト出版物のタイトルSpringer Optimization and Its Applications
出版者Springer International Publishing
ページ251-270
ページ数20
DOI
出版物ステータス出版済み - 1 1 2019

出版物シリーズ

名前Springer Optimization and Its Applications
146
ISSN(印刷物)1931-6828
ISSN(電子版)1931-6836

Fingerprint

Resolvent
Equilibrium State
Crystal
Algebra
Anharmonic Oscillator
Uniqueness
Integer
Operator
Standards

All Science Journal Classification (ASJC) codes

  • Control and Optimization

これを引用

Kanda, T., & Matsui, T. (2019). Regular KMS States of Weakly Coupled Anharmonic Crystals and the Resolvent CCR Algebra. : Springer Optimization and Its Applications (pp. 251-270). (Springer Optimization and Its Applications; 巻数 146). Springer International Publishing. https://doi.org/10.1007/978-3-030-12661-2_12

Regular KMS States of Weakly Coupled Anharmonic Crystals and the Resolvent CCR Algebra. / Kanda, Tomohiro; Matsui, Taku.

Springer Optimization and Its Applications. Springer International Publishing, 2019. p. 251-270 (Springer Optimization and Its Applications; 巻 146).

研究成果: 著書/レポートタイプへの貢献

Kanda, T & Matsui, T 2019, Regular KMS States of Weakly Coupled Anharmonic Crystals and the Resolvent CCR Algebra. : Springer Optimization and Its Applications. Springer Optimization and Its Applications, 巻. 146, Springer International Publishing, pp. 251-270. https://doi.org/10.1007/978-3-030-12661-2_12
Kanda T, Matsui T. Regular KMS States of Weakly Coupled Anharmonic Crystals and the Resolvent CCR Algebra. : Springer Optimization and Its Applications. Springer International Publishing. 2019. p. 251-270. (Springer Optimization and Its Applications). https://doi.org/10.1007/978-3-030-12661-2_12
Kanda, Tomohiro ; Matsui, Taku. / Regular KMS States of Weakly Coupled Anharmonic Crystals and the Resolvent CCR Algebra. Springer Optimization and Its Applications. Springer International Publishing, 2019. pp. 251-270 (Springer Optimization and Its Applications).
@inbook{b18318a57f714ff5ab3aee047ab1a748,
title = "Regular KMS States of Weakly Coupled Anharmonic Crystals and the Resolvent CCR Algebra",
abstract = "We consider equilibrium states of weakly coupled anharmonic quantum oscillators(= anharmonic crystal) on an integer lattice Z. We employed standard functional analytic methods for Schr{\"o}dinger operators and we show existence of the infinite volume limit of equilibrium states, and uniqueness of the regular KMS (Kubo–Martin–Schwinger) states in the frame of Resolvent CCR Algebra introduced by D. Buchholz and H. Grundling.",
author = "Tomohiro Kanda and Taku Matsui",
year = "2019",
month = "1",
day = "1",
doi = "10.1007/978-3-030-12661-2_12",
language = "English",
series = "Springer Optimization and Its Applications",
publisher = "Springer International Publishing",
pages = "251--270",
booktitle = "Springer Optimization and Its Applications",

}

TY - CHAP

T1 - Regular KMS States of Weakly Coupled Anharmonic Crystals and the Resolvent CCR Algebra

AU - Kanda, Tomohiro

AU - Matsui, Taku

PY - 2019/1/1

Y1 - 2019/1/1

N2 - We consider equilibrium states of weakly coupled anharmonic quantum oscillators(= anharmonic crystal) on an integer lattice Z. We employed standard functional analytic methods for Schrödinger operators and we show existence of the infinite volume limit of equilibrium states, and uniqueness of the regular KMS (Kubo–Martin–Schwinger) states in the frame of Resolvent CCR Algebra introduced by D. Buchholz and H. Grundling.

AB - We consider equilibrium states of weakly coupled anharmonic quantum oscillators(= anharmonic crystal) on an integer lattice Z. We employed standard functional analytic methods for Schrödinger operators and we show existence of the infinite volume limit of equilibrium states, and uniqueness of the regular KMS (Kubo–Martin–Schwinger) states in the frame of Resolvent CCR Algebra introduced by D. Buchholz and H. Grundling.

UR - http://www.scopus.com/inward/record.url?scp=85066734576&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85066734576&partnerID=8YFLogxK

U2 - 10.1007/978-3-030-12661-2_12

DO - 10.1007/978-3-030-12661-2_12

M3 - Chapter

AN - SCOPUS:85066734576

T3 - Springer Optimization and Its Applications

SP - 251

EP - 270

BT - Springer Optimization and Its Applications

PB - Springer International Publishing

ER -