Regular points for ergodic sinai measures

研究成果: Contribution to journalArticle査読

9 被引用数 (Scopus)

抄録

Ergodic properties of smooth dynamical systems are considered. A point is called regular for an ergodic measure μ if it is generic for μ and the Lyapunov exponents at it coincide with those of μ. We show that an ergodic measure with no zero Lyapunov exponent is absolutely continuous with respect to unstable foliation [L] if and only if the set of all points which are regular for it has positive Lebesgue measure.

本文言語英語
ページ(範囲)747-766
ページ数20
ジャーナルTransactions of the American Mathematical Society
328
2
DOI
出版ステータス出版済み - 12 1991
外部発表はい

All Science Journal Classification (ASJC) codes

  • 数学 (全般)
  • 応用数学

フィンガープリント

「Regular points for ergodic sinai measures」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル