TY - JOUR
T1 - Regulation of lymphoid enhancer factor 1/T-cell factor by mitogen-activated protein kinase-related Nemo-like kinase-dependent phosphorylation in Wnt/β-catenin signaling
AU - Ishitani, Tohru
AU - Ninomiya-Tsuji, Jun
AU - Matsumoto, Kunihiro
PY - 2003/2
Y1 - 2003/2
N2 - The Wnt/β-catenin signaling pathway regulates many developmental processes by modulating gene expression. Wnt signaling induces the stabilization of cytosolic β-catenin, which then associates with lymphoid enhancer factor and T-cell factor (LEF-1/TCF) to form a transcription complex that activates Wnt target genes. Previously, we have shown that a specific mitogen-activated protein (MAP) kinase pathway involving the MAP kinase kinase kinase TAK1 and MAP kinase-related Nemo-like kinase (NLK) suppresses Wnt signaling. In this study, we investigated the relationships among NLK, β-catenin, and LEF-1/TCF. We found that NLK interacts directly with LEF-1/TCF and indirectly with β-catenin via LEF-1/TCF to form a complex. NLK phosphorylates LEF-1/TCF on two serine/threonine residues located in its central region. Mutation of both residues to alanine enhanced LEF-1 transcriptional activity and rendered it resistant to inhibition by NLK. Phosphorylation of TCF-4 by NLK inhibited DNA binding by the β-catenin-TCF-4 complex. However, this inhibition was abrogated when a mutant form of TCF-4 was used in which both threonines were replaced with valines. These results suggest that NLK phosphorylation on these sites contributes to the down-regulation of LEF-1/TCF transcriptional activity.
AB - The Wnt/β-catenin signaling pathway regulates many developmental processes by modulating gene expression. Wnt signaling induces the stabilization of cytosolic β-catenin, which then associates with lymphoid enhancer factor and T-cell factor (LEF-1/TCF) to form a transcription complex that activates Wnt target genes. Previously, we have shown that a specific mitogen-activated protein (MAP) kinase pathway involving the MAP kinase kinase kinase TAK1 and MAP kinase-related Nemo-like kinase (NLK) suppresses Wnt signaling. In this study, we investigated the relationships among NLK, β-catenin, and LEF-1/TCF. We found that NLK interacts directly with LEF-1/TCF and indirectly with β-catenin via LEF-1/TCF to form a complex. NLK phosphorylates LEF-1/TCF on two serine/threonine residues located in its central region. Mutation of both residues to alanine enhanced LEF-1 transcriptional activity and rendered it resistant to inhibition by NLK. Phosphorylation of TCF-4 by NLK inhibited DNA binding by the β-catenin-TCF-4 complex. However, this inhibition was abrogated when a mutant form of TCF-4 was used in which both threonines were replaced with valines. These results suggest that NLK phosphorylation on these sites contributes to the down-regulation of LEF-1/TCF transcriptional activity.
UR - http://www.scopus.com/inward/record.url?scp=0037313260&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037313260&partnerID=8YFLogxK
U2 - 10.1128/MCB.23.4.1379-1389.2003
DO - 10.1128/MCB.23.4.1379-1389.2003
M3 - Article
C2 - 12556497
AN - SCOPUS:0037313260
SN - 0270-7306
VL - 23
SP - 1379
EP - 1389
JO - Molecular and Cellular Biology
JF - Molecular and Cellular Biology
IS - 4
ER -