Remote sensing of rough surface parameters using artificial neural network technique

Akira Ishimaru, Jenq Neng Hwang, Kuniaki Yoshitomi, Jei Shuan Chen

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

1 被引用数 (Scopus)

抄録

The artificial neural network (ANN) technique is applied to the remote sensing of the rms height and the correlation distance of one-dimensional rough surfaces. The surface is illuminated by a beam wave, and the intensity correlations of the scattered wave at two wavelengths in the specular and backward directions are used to determine the roughness parameters. Scattered intensity correlations calculated by Monte Carlo simulations are used to train the ANN, and two methods, the explicit inversion method and the iterative constrained inversion method, are used to perform the inversion. The technique is applicable to the range of parameters, 0.2 <σ/λ <1.0 and 1.0 < ℓ/λ < 5.0, where σ is the rms height and ℓ is the correlation distance of the surface roughness. An optimum surface area illuminated by the incident beam is approximately 20λ. Both the explicit inverse method and the iterative constrained inversion method give inversion values which are close to the target values. The iterative constrained inversion method appears to give smaller errors, although the required computer time is longer.

本文言語英語
ホスト出版物のタイトルIGARSS 1992 - International Geoscience and Remote Sensing Symposium
ホスト出版物のサブタイトルInternational Space Year: Space Remote Sensing
編集者Ruby Williamson, Tammy Stein
出版社Institute of Electrical and Electronics Engineers Inc.
ページ1072-1074
ページ数3
ISBN(電子版)0780301382
DOI
出版ステータス出版済み - 1992
イベント12th Annual International Geoscience and Remote Sensing Symposium, IGARSS 1992 - Houston, 米国
継続期間: 5 26 19925 29 1992

出版物シリーズ

名前International Geoscience and Remote Sensing Symposium (IGARSS)
2

その他

その他12th Annual International Geoscience and Remote Sensing Symposium, IGARSS 1992
国/地域米国
CityHouston
Period5/26/925/29/92

All Science Journal Classification (ASJC) codes

  • コンピュータ サイエンスの応用
  • 地球惑星科学(全般)

フィンガープリント

「Remote sensing of rough surface parameters using artificial neural network technique」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル