Renormalization-group and numerical analysis of a noisy Kuramoto-Sivashinsky equation in 1 + 1 dimensions

研究成果: Contribution to journalArticle査読

18 被引用数 (Scopus)

抄録

The long-wavelength properties of a noisy Kuramoto-Sivashinsky (KS) equation in 1+1 dimensions are investigated by use of the dynamic renormalization group (RG) and direct numerical simulations. It is shown that the noisy KS equation is in the same universality class as the Kardar-Parisi-Zhang (KPZ) equation in the sense that they have scale invariant solutions with the same scaling exponents in the long-wavelength limit. The RG analysis reveals that the RG flow for the parameters of the noisy KS equation rapidly approach the KPZ fixed point with increasing strength of the noise. This is supplemented by numerical simulations of the KS equation with a stochastic noise, in which scaling behavior close to the KPZ scaling can be observed even in a moderate system size and time.

本文言語英語
論文番号046138
ジャーナルPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
71
4
DOI
出版ステータス出版済み - 4 2005

All Science Journal Classification (ASJC) codes

  • 統計物理学および非線形物理学
  • 統計学および確率
  • 凝縮系物理学

フィンガープリント

「Renormalization-group and numerical analysis of a noisy Kuramoto-Sivashinsky equation in 1 + 1 dimensions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル