Repeated magmatism at 34Ma and 23-20Ma producing high magnesian adakitic andesites and transitional basalts on southern Okushiri Island, NE Japan arc

Makoto Sato, Kenji Shuto, Rikako Nohara-Imanaka, Eiichi Takazawa, Yasuhito Osanai, Nobuhiko Nakano

研究成果: ジャーナルへの寄稿記事

8 引用 (Scopus)

抄録

The southern part of Okushiri Island in the present-day back-arc margin of the NE Japan arc is one of the rare convergent plate boundaries where similar magma types (high-magnesian adakitic andesite (HMAA) and high-TiO2 basalt (HTB)) have been erupted concurrently at more than one time. Oligocene HMAA can be divided into two types: HMAA-I is characterized by high Sr/Y and low Y, and HMAA-II by relatively low Sr/Y and high Y. HMAA-I is primitive in terms of MgO (8.5wt.%), Mg# (67), Ni (232ppm) and Cr (613ppm) contents, and the most Mg-rich olivine phenocrysts plot within the mantle olivine array in terms of Fo and NiO. The similar Cr versus Ni relations of types I and II HMAA indicate some interaction of slab-derived adakitic melts with mantle peridotite, whereas Ni contents are higher than those of most boninites derived by partial melting of mantle peridotite at a given Cr content. Types I and II HMAA have more enriched Sr and Nd isotopic compositions than N-MORB. The petrography and geochemistry of these rocks, combined with published results on the genesis of high-magnesian andesite (HMA) indicate that types I and II HMAA could be produced by interaction of slab (N-MORB and sediment)-derived adakitic melts with mantle peridotite. The comagmatism of HMAA and HTB is ascribed to the following model. A cool, less hydrous, adakite magma (spherical diapir) would rise from the subducting slab (Pacific Plate) and become more hydrous as a result of its interaction with overlying hydrous peridotite. This hydrated adakitic diapir further ascends and is heated on entering the overlying mantle wedge. Subsequently, the temperature and H2O gradients in the ascending adakitic diapir and surrounding mantle peridotite would have been established. The HTB magma segregated from the surrounding mantle peridotite region (high temperature and low H2O content) at a depth of 60km or more, whereas the adakitic diapir (low temperature and high H2O content) continued to rise, with its chemical composition modified due to interaction with the surrounding mantle peridotite. Type I HMAA then segregated at about 50km. The most attractive tectono-magmatic model to account for production of adakitic magma at two different periods in the same cool subduction zone region involves upwelling of depleted hot asthenosphere into the subcontinental lithosphere beneath the back-arc margin of the NE Japan arc, coincident with back-arc rifting which took place at the initiation of the Japan Sea opening. The unusually high temperature conditions established in the mantle wedge due to upwelling of depleted hot asthenosphere caused partial melting of a limited part of the cool oceanic crust subducting beneath the NE Japan arc, resulting in the generation of adakitic magma.

元の言語英語
ページ(範囲)60-83
ページ数24
ジャーナルLithos
205
DOI
出版物ステータス出版済み - 9 15 2014

Fingerprint

andesite
magmatism
basalt
peridotite
mantle
diapir
Melting
Petrography
magma
Temperature
Geochemistry
Chemical analysis
slab
Sediments
asthenosphere
Rocks
mid-ocean ridge basalt
partial melting
olivine
upwelling

All Science Journal Classification (ASJC) codes

  • Geochemistry and Petrology

これを引用

Repeated magmatism at 34Ma and 23-20Ma producing high magnesian adakitic andesites and transitional basalts on southern Okushiri Island, NE Japan arc. / Sato, Makoto; Shuto, Kenji; Nohara-Imanaka, Rikako; Takazawa, Eiichi; Osanai, Yasuhito; Nakano, Nobuhiko.

:: Lithos, 巻 205, 15.09.2014, p. 60-83.

研究成果: ジャーナルへの寄稿記事

@article{c4db644cfcac48639678aaa0a11c6f58,
title = "Repeated magmatism at 34Ma and 23-20Ma producing high magnesian adakitic andesites and transitional basalts on southern Okushiri Island, NE Japan arc",
abstract = "The southern part of Okushiri Island in the present-day back-arc margin of the NE Japan arc is one of the rare convergent plate boundaries where similar magma types (high-magnesian adakitic andesite (HMAA) and high-TiO2 basalt (HTB)) have been erupted concurrently at more than one time. Oligocene HMAA can be divided into two types: HMAA-I is characterized by high Sr/Y and low Y, and HMAA-II by relatively low Sr/Y and high Y. HMAA-I is primitive in terms of MgO (8.5wt.{\%}), Mg# (67), Ni (232ppm) and Cr (613ppm) contents, and the most Mg-rich olivine phenocrysts plot within the mantle olivine array in terms of Fo and NiO. The similar Cr versus Ni relations of types I and II HMAA indicate some interaction of slab-derived adakitic melts with mantle peridotite, whereas Ni contents are higher than those of most boninites derived by partial melting of mantle peridotite at a given Cr content. Types I and II HMAA have more enriched Sr and Nd isotopic compositions than N-MORB. The petrography and geochemistry of these rocks, combined with published results on the genesis of high-magnesian andesite (HMA) indicate that types I and II HMAA could be produced by interaction of slab (N-MORB and sediment)-derived adakitic melts with mantle peridotite. The comagmatism of HMAA and HTB is ascribed to the following model. A cool, less hydrous, adakite magma (spherical diapir) would rise from the subducting slab (Pacific Plate) and become more hydrous as a result of its interaction with overlying hydrous peridotite. This hydrated adakitic diapir further ascends and is heated on entering the overlying mantle wedge. Subsequently, the temperature and H2O gradients in the ascending adakitic diapir and surrounding mantle peridotite would have been established. The HTB magma segregated from the surrounding mantle peridotite region (high temperature and low H2O content) at a depth of 60km or more, whereas the adakitic diapir (low temperature and high H2O content) continued to rise, with its chemical composition modified due to interaction with the surrounding mantle peridotite. Type I HMAA then segregated at about 50km. The most attractive tectono-magmatic model to account for production of adakitic magma at two different periods in the same cool subduction zone region involves upwelling of depleted hot asthenosphere into the subcontinental lithosphere beneath the back-arc margin of the NE Japan arc, coincident with back-arc rifting which took place at the initiation of the Japan Sea opening. The unusually high temperature conditions established in the mantle wedge due to upwelling of depleted hot asthenosphere caused partial melting of a limited part of the cool oceanic crust subducting beneath the NE Japan arc, resulting in the generation of adakitic magma.",
author = "Makoto Sato and Kenji Shuto and Rikako Nohara-Imanaka and Eiichi Takazawa and Yasuhito Osanai and Nobuhiko Nakano",
year = "2014",
month = "9",
day = "15",
doi = "10.1016/j.lithos.2014.06.008",
language = "English",
volume = "205",
pages = "60--83",
journal = "Lithos",
issn = "0024-4937",
publisher = "Elsevier",

}

TY - JOUR

T1 - Repeated magmatism at 34Ma and 23-20Ma producing high magnesian adakitic andesites and transitional basalts on southern Okushiri Island, NE Japan arc

AU - Sato, Makoto

AU - Shuto, Kenji

AU - Nohara-Imanaka, Rikako

AU - Takazawa, Eiichi

AU - Osanai, Yasuhito

AU - Nakano, Nobuhiko

PY - 2014/9/15

Y1 - 2014/9/15

N2 - The southern part of Okushiri Island in the present-day back-arc margin of the NE Japan arc is one of the rare convergent plate boundaries where similar magma types (high-magnesian adakitic andesite (HMAA) and high-TiO2 basalt (HTB)) have been erupted concurrently at more than one time. Oligocene HMAA can be divided into two types: HMAA-I is characterized by high Sr/Y and low Y, and HMAA-II by relatively low Sr/Y and high Y. HMAA-I is primitive in terms of MgO (8.5wt.%), Mg# (67), Ni (232ppm) and Cr (613ppm) contents, and the most Mg-rich olivine phenocrysts plot within the mantle olivine array in terms of Fo and NiO. The similar Cr versus Ni relations of types I and II HMAA indicate some interaction of slab-derived adakitic melts with mantle peridotite, whereas Ni contents are higher than those of most boninites derived by partial melting of mantle peridotite at a given Cr content. Types I and II HMAA have more enriched Sr and Nd isotopic compositions than N-MORB. The petrography and geochemistry of these rocks, combined with published results on the genesis of high-magnesian andesite (HMA) indicate that types I and II HMAA could be produced by interaction of slab (N-MORB and sediment)-derived adakitic melts with mantle peridotite. The comagmatism of HMAA and HTB is ascribed to the following model. A cool, less hydrous, adakite magma (spherical diapir) would rise from the subducting slab (Pacific Plate) and become more hydrous as a result of its interaction with overlying hydrous peridotite. This hydrated adakitic diapir further ascends and is heated on entering the overlying mantle wedge. Subsequently, the temperature and H2O gradients in the ascending adakitic diapir and surrounding mantle peridotite would have been established. The HTB magma segregated from the surrounding mantle peridotite region (high temperature and low H2O content) at a depth of 60km or more, whereas the adakitic diapir (low temperature and high H2O content) continued to rise, with its chemical composition modified due to interaction with the surrounding mantle peridotite. Type I HMAA then segregated at about 50km. The most attractive tectono-magmatic model to account for production of adakitic magma at two different periods in the same cool subduction zone region involves upwelling of depleted hot asthenosphere into the subcontinental lithosphere beneath the back-arc margin of the NE Japan arc, coincident with back-arc rifting which took place at the initiation of the Japan Sea opening. The unusually high temperature conditions established in the mantle wedge due to upwelling of depleted hot asthenosphere caused partial melting of a limited part of the cool oceanic crust subducting beneath the NE Japan arc, resulting in the generation of adakitic magma.

AB - The southern part of Okushiri Island in the present-day back-arc margin of the NE Japan arc is one of the rare convergent plate boundaries where similar magma types (high-magnesian adakitic andesite (HMAA) and high-TiO2 basalt (HTB)) have been erupted concurrently at more than one time. Oligocene HMAA can be divided into two types: HMAA-I is characterized by high Sr/Y and low Y, and HMAA-II by relatively low Sr/Y and high Y. HMAA-I is primitive in terms of MgO (8.5wt.%), Mg# (67), Ni (232ppm) and Cr (613ppm) contents, and the most Mg-rich olivine phenocrysts plot within the mantle olivine array in terms of Fo and NiO. The similar Cr versus Ni relations of types I and II HMAA indicate some interaction of slab-derived adakitic melts with mantle peridotite, whereas Ni contents are higher than those of most boninites derived by partial melting of mantle peridotite at a given Cr content. Types I and II HMAA have more enriched Sr and Nd isotopic compositions than N-MORB. The petrography and geochemistry of these rocks, combined with published results on the genesis of high-magnesian andesite (HMA) indicate that types I and II HMAA could be produced by interaction of slab (N-MORB and sediment)-derived adakitic melts with mantle peridotite. The comagmatism of HMAA and HTB is ascribed to the following model. A cool, less hydrous, adakite magma (spherical diapir) would rise from the subducting slab (Pacific Plate) and become more hydrous as a result of its interaction with overlying hydrous peridotite. This hydrated adakitic diapir further ascends and is heated on entering the overlying mantle wedge. Subsequently, the temperature and H2O gradients in the ascending adakitic diapir and surrounding mantle peridotite would have been established. The HTB magma segregated from the surrounding mantle peridotite region (high temperature and low H2O content) at a depth of 60km or more, whereas the adakitic diapir (low temperature and high H2O content) continued to rise, with its chemical composition modified due to interaction with the surrounding mantle peridotite. Type I HMAA then segregated at about 50km. The most attractive tectono-magmatic model to account for production of adakitic magma at two different periods in the same cool subduction zone region involves upwelling of depleted hot asthenosphere into the subcontinental lithosphere beneath the back-arc margin of the NE Japan arc, coincident with back-arc rifting which took place at the initiation of the Japan Sea opening. The unusually high temperature conditions established in the mantle wedge due to upwelling of depleted hot asthenosphere caused partial melting of a limited part of the cool oceanic crust subducting beneath the NE Japan arc, resulting in the generation of adakitic magma.

UR - http://www.scopus.com/inward/record.url?scp=84904249117&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84904249117&partnerID=8YFLogxK

U2 - 10.1016/j.lithos.2014.06.008

DO - 10.1016/j.lithos.2014.06.008

M3 - Article

AN - SCOPUS:84904249117

VL - 205

SP - 60

EP - 83

JO - Lithos

JF - Lithos

SN - 0024-4937

ER -