Representative Selection with Structured Sparsity

Hongxing Wang, Yoshinobu Kawahara, Chaoqun Weng, Junsong Yuan

研究成果: ジャーナルへの寄稿学術誌査読

38 被引用数 (Scopus)

抄録

We propose a novel formulation to find representatives in data samples via learning with structured sparsity. To find representatives with both diversity and representativeness, we formulate the problem as a structurally-regularized learning where the objective function consists of a reconstruction error and three structured regularizers: (1) group sparsity regularizer, (2) diversity regularizer, and (3) locality-sensitivity regularizer. For the optimization of the objective, we propose an accelerated proximal gradient algorithm, combined with the proximal-Dykstra method and the calculation of parametric maximum flows. Experiments on image and video data validate the effectiveness of our method in finding exemplars with diversity and representativeness and demonstrate its robustness to outliers.

本文言語英語
ページ(範囲)268-278
ページ数11
ジャーナルPattern Recognition
63
DOI
出版ステータス出版済み - 3月 1 2017
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • ソフトウェア
  • 信号処理
  • コンピュータ ビジョンおよびパターン認識
  • 人工知能

フィンガープリント

「Representative Selection with Structured Sparsity」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル