抄録
We propose a novel formulation to find representatives in data samples via learning with structured sparsity. To find representatives with both diversity and representativeness, we formulate the problem as a structurally-regularized learning where the objective function consists of a reconstruction error and three structured regularizers: (1) group sparsity regularizer, (2) diversity regularizer, and (3) locality-sensitivity regularizer. For the optimization of the objective, we propose an accelerated proximal gradient algorithm, combined with the proximal-Dykstra method and the calculation of parametric maximum flows. Experiments on image and video data validate the effectiveness of our method in finding exemplars with diversity and representativeness and demonstrate its robustness to outliers.
本文言語 | 英語 |
---|---|
ページ(範囲) | 268-278 |
ページ数 | 11 |
ジャーナル | Pattern Recognition |
巻 | 63 |
DOI | |
出版ステータス | 出版済み - 3月 1 2017 |
外部発表 | はい |
!!!All Science Journal Classification (ASJC) codes
- ソフトウェア
- 信号処理
- コンピュータ ビジョンおよびパターン認識
- 人工知能