Research and development on membrane IS process for hydrogen production using solar heat

Odtsetseg Myagmarjav, Jin Iwatsuki, Nobuyuki Tanaka, Hiroki Noguchi, Yu Kamiji, Ioka Ikuo Ioka, Shinji Kubo, Mikihiro Nomura, Tetsuya Yamaki, Shinichi Sawada, Toshinori Tsuru, Masakoto Kanezashi, Xin Yu, Masato Machida, Tatsumi Ishihara, Hiroaki Abekawa, Masahiko Mizuno, Tomoyuki Taguchi, Y. Hosono, Yoshiro KurikiMakoto Inomata, K. Miyajima, Yoshiyuki Inagaki, Nariaki Sakaba

    研究成果: ジャーナルへの寄稿学術誌査読

    19 被引用数 (Scopus)


    Thermochemical hydrogen production has attracted considerable interest as a clean energy solution to address the challenges of climate change and environmental sustainability. The thermochemical water-splitting iodine-sulfur (IS) process uses heat from nuclear or solar power and thus is a promising next-generation thermochemical hydrogen production method that is independent of fossil fuels and can provide energy security. This paper presents the current state of research and development (R&D) of the IS process based on membrane techniques using solar energy at a medium temperature of 600 °C. Membrane design strategies have the most potential for making the IS process using solar energy highly efficient and economical and are illustrated here in detail. Three aspects of membrane design proposed herein for the IS process have led to a considerable improvement of the total thermal efficiency of the process: membrane reactors, membranes, and reaction catalysts. Experimental studies in the applications of these membrane design techniques to the Bunsen reaction, sulfuric acid decomposition, and hydrogen iodide decomposition are discussed.

    ジャーナルInternational Journal of Hydrogen Energy
    出版ステータス出版済み - 7月 19 2019

    !!!All Science Journal Classification (ASJC) codes

    • 再生可能エネルギー、持続可能性、環境
    • 燃料技術
    • 凝縮系物理学
    • エネルギー工学および電力技術


    「Research and development on membrane IS process for hydrogen production using solar heat」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。