TY - JOUR
T1 - Responses to apical and basolateral application of glutamate in mouse fungiform taste cells with action potentials.
AU - Niki, Mayu
AU - Takai, Shingo
AU - Kusuhara, Yoko
AU - Ninomiya, Yuzo
AU - Yoshida, Ryusuke
PY - 2011/10
Y1 - 2011/10
N2 - In taste bud cells, glutamate may elicit two types of responses, as an umami tastant and as a neurotransmitter. Glutamate applied to apical membrane of taste cells would elicit taste responses whereas glutamate applied to basolateral membrane may act as a neurotransmitter. Using restricted stimulation to apical or basolateral membrane of taste cells, we examined responses of taste cells to glutamate stimulation, separately. Apical application of monosodium glutamate (MSG, 0.3 M) increased firing frequency in some of mouse fungiform taste cells that evoked action potentials. These cells were tested with other basic taste compounds, NaCl (salty), saccharin (sweet), HCl (sour), and quinine (bitter). MSG-sensitive taste cells could be classified into sweet-best (S-type), MSG-best (M-type), and NaCl or other electrolytes-best (N- or E/H-type) cells. Furthermore, S- and M-type could be classified into two sub-types according to the synergistic effect between MSG and inosine-5'-monophosphate (S1, M1 with synergism; S2, M2 without synergism). Basolateral application of glutamate (100 μM) had almost no effect on the mean spontaneous firing rates in taste cells. However, about 10% of taste cells tested showed transient increases in spontaneous firing rates (>mean + 2 standard deviation) after basolateral application of glutamate. These results suggest the existence of multiple types of umami-sensitive taste cells and the existence of glutamate receptor(s) on the basolateral membrane of a subset of taste cells.
AB - In taste bud cells, glutamate may elicit two types of responses, as an umami tastant and as a neurotransmitter. Glutamate applied to apical membrane of taste cells would elicit taste responses whereas glutamate applied to basolateral membrane may act as a neurotransmitter. Using restricted stimulation to apical or basolateral membrane of taste cells, we examined responses of taste cells to glutamate stimulation, separately. Apical application of monosodium glutamate (MSG, 0.3 M) increased firing frequency in some of mouse fungiform taste cells that evoked action potentials. These cells were tested with other basic taste compounds, NaCl (salty), saccharin (sweet), HCl (sour), and quinine (bitter). MSG-sensitive taste cells could be classified into sweet-best (S-type), MSG-best (M-type), and NaCl or other electrolytes-best (N- or E/H-type) cells. Furthermore, S- and M-type could be classified into two sub-types according to the synergistic effect between MSG and inosine-5'-monophosphate (S1, M1 with synergism; S2, M2 without synergism). Basolateral application of glutamate (100 μM) had almost no effect on the mean spontaneous firing rates in taste cells. However, about 10% of taste cells tested showed transient increases in spontaneous firing rates (>mean + 2 standard deviation) after basolateral application of glutamate. These results suggest the existence of multiple types of umami-sensitive taste cells and the existence of glutamate receptor(s) on the basolateral membrane of a subset of taste cells.
UR - http://www.scopus.com/inward/record.url?scp=85027949062&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85027949062&partnerID=8YFLogxK
U2 - 10.1007/s10571-011-9702-5
DO - 10.1007/s10571-011-9702-5
M3 - Article
C2 - 21573975
AN - SCOPUS:85027949062
SN - 0272-4340
VL - 31
SP - 1033
EP - 1040
JO - Cellular and Molecular Neurobiology
JF - Cellular and Molecular Neurobiology
IS - 7
ER -