Restrictions of free arrangements and the division theorem

Takuro Abe

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

6 被引用数 (Scopus)

抄録

This is a survey and research note on the modified Orlik conjecture derived from the division theorem introduced in Abe (Invent. Math. 204(1), 317–346, 2016). The division theorem is a generalization of classical addition-deletion theorems for free arrangements. The division theorem can be regarded as a modified converse of the Orlik’s conjecture with a combinatorial condition, i.e., an arrangement is free if the restriction is free and the characteristic polynomial of the restriction divides that of an arrangement. In this article we recall, summarize, pose and re-formulate some of results and problems related to the division theorem based on Abe (Invent. Math. 204(1), 317–346, 2016), and study the modified Orlik’s conjecture with partial answers.

本文言語英語
ホスト出版物のタイトルPerspectives in Lie Theory
編集者Filippo Callegaro, Giovanna Carnovale, Fabrizio Caselli, Corrado De Concini, Alberto De Sole
出版社Springer International Publishing
ページ389-401
ページ数13
ISBN(印刷版)9783319589701
DOI
出版ステータス出版済み - 2017
イベントINdAM Workshop on Perspectives in Lie Theory, 2015 - Pisa, イタリア
継続期間: 12月 9 20142月 28 2015

出版物シリーズ

名前Springer INdAM Series
19
ISSN(印刷版)2281-518X
ISSN(電子版)2281-5198

その他

その他INdAM Workshop on Perspectives in Lie Theory, 2015
国/地域イタリア
CityPisa
Period12/9/142/28/15

!!!All Science Journal Classification (ASJC) codes

  • 数学 (全般)

フィンガープリント

「Restrictions of free arrangements and the division theorem」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル