Result-indistinguishable zero-knowledge proofs: Increased power and constant-round protocols

Giovanni Di Crescenzo, Kouichi Sakurai, Moti Yung

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

抜粋

We investigate result-indistinguishable perfect zero-knowledge proof systems [8] for "transferring the decision of whether the membership of an input in a language is true or not". Previously only a single number-theoretic language was known to have such a proof system and possible extensions were left as an open question. We show that all known random self-reducible languages (e.g., graph isomorphism, quadratic residuosity, discrete log) and compositions over them have such systems. We also consider techniques for constant-round protocols for these languages in this model, and obtain a 5 round protocol scheme.

元の言語英語
ホスト出版物のタイトルSTACS 98 - 15th Annual Symposium on Theoretical Aspects of Computer Science, Proceedings
ページ511-521
ページ数11
DOI
出版物ステータス出版済み - 1998
イベント15th Annual Symposium on Theoretical Aspects of Computer Science, STACS 98 - Paris, フランス
継続期間: 2 25 19982 27 1998

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
1373 LNCS
ISSN(印刷物)0302-9743
ISSN(電子版)1611-3349

その他

その他15th Annual Symposium on Theoretical Aspects of Computer Science, STACS 98
フランス
Paris
期間2/25/982/27/98

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Computer Science(all)

フィンガープリント Result-indistinguishable zero-knowledge proofs: Increased power and constant-round protocols' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Di Crescenzo, G., Sakurai, K., & Yung, M. (1998). Result-indistinguishable zero-knowledge proofs: Increased power and constant-round protocols. : STACS 98 - 15th Annual Symposium on Theoretical Aspects of Computer Science, Proceedings (pp. 511-521). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 巻数 1373 LNCS). https://doi.org/10.1007/BFb0028586