Retrieval of aerosol components using multi-wavelength Mie-Raman lidar and comparison with ground aerosol sampling

Yukari Hara, Tomoaki Nishizawa, Nobuo Sugimoto, Kazuo Osada, Keiya Yumimoto, Itsushi Uno, Rei Kudo, Hiroshi Ishimoto

研究成果: ジャーナルへの寄稿記事

4 引用 (Scopus)

抄録

We verified an algorithm using multi-wavelength Mie-Raman lidar (MMRL) observations to retrieve four aerosol components (black carbon (BC), sea salt (SS), air pollution (AP), and mineral dust (DS)) with in-situ aerosol measurements, and determined the seasonal variation of aerosol components in Fukuoka, in the western region of Japan. PM 2.5 , PM 10 , and mass concentrations of BC and SS components are derived from in-situ measurements. MMRL provides the aerosol extinction coefficient (α), particle linear depolarization ratio (δ), backscatter coefficient (β), and lidar ratio (S) at 355 and 532 nm, and the attenuated backscatter coefficient (β att ) at 1064 nm. We retrieved vertical distributions of extinction coefficients at 532 nm for four aerosol components (BC, SS, AP, and DS) using 1α 532 + 1β 532 + 1β att,1064 + 1δ 532 data of MMRL. The retrieved extinction coefficients of the four aerosol components at 532 nm were converted to mass concentrations using the theoretical computed conversion factor assuming the prescribed size distribution, particle shape, and refractive index for each aerosol component. MMRL and in-situ measurements confirmed that seasonal variation of aerosol optical properties was affected by internal/external mixing of various aerosol components, in addition to hygroscopic growth of water-soluble aerosols. MMRL overestimates BC mass concentration compared to in-situ observation using the pure BC model. This overestimation was reduced drastically by introducing the internal mixture model of BC and water-soluble substances (Core-Gray Shell (CGS) model). This result suggests that considering the internal mixture of BC and water-soluble substances is essential for evaluating BC mass concentration in this area. Systematic overestimation of BC mass concentration was found during summer, even when we applied the CGS model. The observational facts based on in-situ and MMRL measurements suggested that misclassification of AP as CGS particles was due to underestimation of relative humidity (RH) by the numerical model in lidar analysis, as well as mismatching of the optical models of AP and CGS assumed in the retrieval with aerosol properties in the actual atmosphere. The time variation of lidar-derived SS was generally consistent with in-situ measurement; however, we found some overestimation of SS during dust events. The cause of this SS overestimation is mainly due to misclassifying internally mixing DS as SS, implying that to consider internal mixing between DS and water-soluble substances leads to better estimation. The time-variations of PM 2.5 and PM 10 generally showed good agreement with in-situ measurement although lidar-derived PM 2.5 and PM 10 overestimated in dust events.

元の言語英語
記事番号937
ジャーナルRemote Sensing
10
発行部数6
DOI
出版物ステータス出版済み - 6 1 2018

Fingerprint

lidar
black carbon
sea salt
aerosol
wavelength
sampling
dust
in situ measurement
extinction coefficient
atmospheric pollution
shell
backscatter
seasonal variation
comparison
aerosol property
refractive index
optical property
relative humidity
vertical distribution
atmosphere

All Science Journal Classification (ASJC) codes

  • Earth and Planetary Sciences(all)

これを引用

Retrieval of aerosol components using multi-wavelength Mie-Raman lidar and comparison with ground aerosol sampling. / Hara, Yukari; Nishizawa, Tomoaki; Sugimoto, Nobuo; Osada, Kazuo; Yumimoto, Keiya; Uno, Itsushi; Kudo, Rei; Ishimoto, Hiroshi.

:: Remote Sensing, 巻 10, 番号 6, 937, 01.06.2018.

研究成果: ジャーナルへの寄稿記事

Hara, Yukari ; Nishizawa, Tomoaki ; Sugimoto, Nobuo ; Osada, Kazuo ; Yumimoto, Keiya ; Uno, Itsushi ; Kudo, Rei ; Ishimoto, Hiroshi. / Retrieval of aerosol components using multi-wavelength Mie-Raman lidar and comparison with ground aerosol sampling. :: Remote Sensing. 2018 ; 巻 10, 番号 6.
@article{bf5366f20ff94cbb96455ac229a5f513,
title = "Retrieval of aerosol components using multi-wavelength Mie-Raman lidar and comparison with ground aerosol sampling",
abstract = "We verified an algorithm using multi-wavelength Mie-Raman lidar (MMRL) observations to retrieve four aerosol components (black carbon (BC), sea salt (SS), air pollution (AP), and mineral dust (DS)) with in-situ aerosol measurements, and determined the seasonal variation of aerosol components in Fukuoka, in the western region of Japan. PM 2.5 , PM 10 , and mass concentrations of BC and SS components are derived from in-situ measurements. MMRL provides the aerosol extinction coefficient (α), particle linear depolarization ratio (δ), backscatter coefficient (β), and lidar ratio (S) at 355 and 532 nm, and the attenuated backscatter coefficient (β att ) at 1064 nm. We retrieved vertical distributions of extinction coefficients at 532 nm for four aerosol components (BC, SS, AP, and DS) using 1α 532 + 1β 532 + 1β att,1064 + 1δ 532 data of MMRL. The retrieved extinction coefficients of the four aerosol components at 532 nm were converted to mass concentrations using the theoretical computed conversion factor assuming the prescribed size distribution, particle shape, and refractive index for each aerosol component. MMRL and in-situ measurements confirmed that seasonal variation of aerosol optical properties was affected by internal/external mixing of various aerosol components, in addition to hygroscopic growth of water-soluble aerosols. MMRL overestimates BC mass concentration compared to in-situ observation using the pure BC model. This overestimation was reduced drastically by introducing the internal mixture model of BC and water-soluble substances (Core-Gray Shell (CGS) model). This result suggests that considering the internal mixture of BC and water-soluble substances is essential for evaluating BC mass concentration in this area. Systematic overestimation of BC mass concentration was found during summer, even when we applied the CGS model. The observational facts based on in-situ and MMRL measurements suggested that misclassification of AP as CGS particles was due to underestimation of relative humidity (RH) by the numerical model in lidar analysis, as well as mismatching of the optical models of AP and CGS assumed in the retrieval with aerosol properties in the actual atmosphere. The time variation of lidar-derived SS was generally consistent with in-situ measurement; however, we found some overestimation of SS during dust events. The cause of this SS overestimation is mainly due to misclassifying internally mixing DS as SS, implying that to consider internal mixing between DS and water-soluble substances leads to better estimation. The time-variations of PM 2.5 and PM 10 generally showed good agreement with in-situ measurement although lidar-derived PM 2.5 and PM 10 overestimated in dust events.",
author = "Yukari Hara and Tomoaki Nishizawa and Nobuo Sugimoto and Kazuo Osada and Keiya Yumimoto and Itsushi Uno and Rei Kudo and Hiroshi Ishimoto",
year = "2018",
month = "6",
day = "1",
doi = "10.3390/rs10060937",
language = "English",
volume = "10",
journal = "Remote Sensing",
issn = "2072-4292",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "6",

}

TY - JOUR

T1 - Retrieval of aerosol components using multi-wavelength Mie-Raman lidar and comparison with ground aerosol sampling

AU - Hara, Yukari

AU - Nishizawa, Tomoaki

AU - Sugimoto, Nobuo

AU - Osada, Kazuo

AU - Yumimoto, Keiya

AU - Uno, Itsushi

AU - Kudo, Rei

AU - Ishimoto, Hiroshi

PY - 2018/6/1

Y1 - 2018/6/1

N2 - We verified an algorithm using multi-wavelength Mie-Raman lidar (MMRL) observations to retrieve four aerosol components (black carbon (BC), sea salt (SS), air pollution (AP), and mineral dust (DS)) with in-situ aerosol measurements, and determined the seasonal variation of aerosol components in Fukuoka, in the western region of Japan. PM 2.5 , PM 10 , and mass concentrations of BC and SS components are derived from in-situ measurements. MMRL provides the aerosol extinction coefficient (α), particle linear depolarization ratio (δ), backscatter coefficient (β), and lidar ratio (S) at 355 and 532 nm, and the attenuated backscatter coefficient (β att ) at 1064 nm. We retrieved vertical distributions of extinction coefficients at 532 nm for four aerosol components (BC, SS, AP, and DS) using 1α 532 + 1β 532 + 1β att,1064 + 1δ 532 data of MMRL. The retrieved extinction coefficients of the four aerosol components at 532 nm were converted to mass concentrations using the theoretical computed conversion factor assuming the prescribed size distribution, particle shape, and refractive index for each aerosol component. MMRL and in-situ measurements confirmed that seasonal variation of aerosol optical properties was affected by internal/external mixing of various aerosol components, in addition to hygroscopic growth of water-soluble aerosols. MMRL overestimates BC mass concentration compared to in-situ observation using the pure BC model. This overestimation was reduced drastically by introducing the internal mixture model of BC and water-soluble substances (Core-Gray Shell (CGS) model). This result suggests that considering the internal mixture of BC and water-soluble substances is essential for evaluating BC mass concentration in this area. Systematic overestimation of BC mass concentration was found during summer, even when we applied the CGS model. The observational facts based on in-situ and MMRL measurements suggested that misclassification of AP as CGS particles was due to underestimation of relative humidity (RH) by the numerical model in lidar analysis, as well as mismatching of the optical models of AP and CGS assumed in the retrieval with aerosol properties in the actual atmosphere. The time variation of lidar-derived SS was generally consistent with in-situ measurement; however, we found some overestimation of SS during dust events. The cause of this SS overestimation is mainly due to misclassifying internally mixing DS as SS, implying that to consider internal mixing between DS and water-soluble substances leads to better estimation. The time-variations of PM 2.5 and PM 10 generally showed good agreement with in-situ measurement although lidar-derived PM 2.5 and PM 10 overestimated in dust events.

AB - We verified an algorithm using multi-wavelength Mie-Raman lidar (MMRL) observations to retrieve four aerosol components (black carbon (BC), sea salt (SS), air pollution (AP), and mineral dust (DS)) with in-situ aerosol measurements, and determined the seasonal variation of aerosol components in Fukuoka, in the western region of Japan. PM 2.5 , PM 10 , and mass concentrations of BC and SS components are derived from in-situ measurements. MMRL provides the aerosol extinction coefficient (α), particle linear depolarization ratio (δ), backscatter coefficient (β), and lidar ratio (S) at 355 and 532 nm, and the attenuated backscatter coefficient (β att ) at 1064 nm. We retrieved vertical distributions of extinction coefficients at 532 nm for four aerosol components (BC, SS, AP, and DS) using 1α 532 + 1β 532 + 1β att,1064 + 1δ 532 data of MMRL. The retrieved extinction coefficients of the four aerosol components at 532 nm were converted to mass concentrations using the theoretical computed conversion factor assuming the prescribed size distribution, particle shape, and refractive index for each aerosol component. MMRL and in-situ measurements confirmed that seasonal variation of aerosol optical properties was affected by internal/external mixing of various aerosol components, in addition to hygroscopic growth of water-soluble aerosols. MMRL overestimates BC mass concentration compared to in-situ observation using the pure BC model. This overestimation was reduced drastically by introducing the internal mixture model of BC and water-soluble substances (Core-Gray Shell (CGS) model). This result suggests that considering the internal mixture of BC and water-soluble substances is essential for evaluating BC mass concentration in this area. Systematic overestimation of BC mass concentration was found during summer, even when we applied the CGS model. The observational facts based on in-situ and MMRL measurements suggested that misclassification of AP as CGS particles was due to underestimation of relative humidity (RH) by the numerical model in lidar analysis, as well as mismatching of the optical models of AP and CGS assumed in the retrieval with aerosol properties in the actual atmosphere. The time variation of lidar-derived SS was generally consistent with in-situ measurement; however, we found some overestimation of SS during dust events. The cause of this SS overestimation is mainly due to misclassifying internally mixing DS as SS, implying that to consider internal mixing between DS and water-soluble substances leads to better estimation. The time-variations of PM 2.5 and PM 10 generally showed good agreement with in-situ measurement although lidar-derived PM 2.5 and PM 10 overestimated in dust events.

UR - http://www.scopus.com/inward/record.url?scp=85048992311&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85048992311&partnerID=8YFLogxK

U2 - 10.3390/rs10060937

DO - 10.3390/rs10060937

M3 - Article

VL - 10

JO - Remote Sensing

JF - Remote Sensing

SN - 2072-4292

IS - 6

M1 - 937

ER -