TY - JOUR
T1 - Right entorhinal cortical thickness is associated with Mini-Mental State Examination scores from multi-country datasets using MRI
AU - Yamashita, Koji
AU - Kuwashiro, Takahiro
AU - Ishikawa, Kensuke
AU - Furuya, Kiyomi
AU - Harada, Shino
AU - Shin, Seitaro
AU - Wada, Noriaki
AU - Hirakawa, Chika
AU - Okada, Yasushi
AU - Noguchi, Tomoyuki
N1 - Funding Information:
Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health ( www.fnih.org ). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.
Funding Information:
This work was supported by Grant of The Clinical Research Promotion Foundation.
Funding Information:
Data collection and sharing for this project was funded by the Alzheimer?s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer?s Association; Alzheimer?s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer?s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.
Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2022/2
Y1 - 2022/2
N2 - Purpose: To discover common biomarkers correlating with the Mini-Mental State Examination (MMSE) scores from multi-country MRI datasets. Methods: The first dataset comprised 112 subjects (49 men, 63 women; range, 46–94 years) at the National Hospital Organization Kyushu Medical Center. A second dataset comprised 300 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (177 men, 123 women; range, 57–91 years). Three-dimensional T1-weighted MR images were collected from both datasets. In total, 14 deep gray matter volumes and 70 cortical thicknesses were obtained from MR images using FreeSurfer software. Total hippocampal volume and the ratio of hippocampus to cerebral volume were also calculated. Correlations between each variable and MMSE scores were assessed using Pearson’s correlation coefficient. Parameters with moderate correlation coefficients (r > 0.3) from each dataset were determined as independent variables and evaluated using general linear model (GLM) analyses. Results: In Pearson’s correlation coefficient, total and bilateral hippocampal volumes, right amygdala volume, and right entorhinal cortex (ERC) thickness showed moderate correlation coefficients (r > 0.3) with MMSE scores from the first dataset. The ADNI dataset showed moderate correlations with MMSE scores in more variables, including bilateral ERC thickness and hippocampal volume. GLM analysis revealed that right ERC thickness correlated significantly with MMSE score in both datasets. Cortical thicknesses of the left parahippocampal gyrus, left inferior parietal lobe, and right fusiform gyrus also significantly correlated with MMSE score in the ADNI dataset (p < 0.05). Conclusion: A positive correlation between right ERC thickness and MMSE score was identified from multi-country datasets.
AB - Purpose: To discover common biomarkers correlating with the Mini-Mental State Examination (MMSE) scores from multi-country MRI datasets. Methods: The first dataset comprised 112 subjects (49 men, 63 women; range, 46–94 years) at the National Hospital Organization Kyushu Medical Center. A second dataset comprised 300 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (177 men, 123 women; range, 57–91 years). Three-dimensional T1-weighted MR images were collected from both datasets. In total, 14 deep gray matter volumes and 70 cortical thicknesses were obtained from MR images using FreeSurfer software. Total hippocampal volume and the ratio of hippocampus to cerebral volume were also calculated. Correlations between each variable and MMSE scores were assessed using Pearson’s correlation coefficient. Parameters with moderate correlation coefficients (r > 0.3) from each dataset were determined as independent variables and evaluated using general linear model (GLM) analyses. Results: In Pearson’s correlation coefficient, total and bilateral hippocampal volumes, right amygdala volume, and right entorhinal cortex (ERC) thickness showed moderate correlation coefficients (r > 0.3) with MMSE scores from the first dataset. The ADNI dataset showed moderate correlations with MMSE scores in more variables, including bilateral ERC thickness and hippocampal volume. GLM analysis revealed that right ERC thickness correlated significantly with MMSE score in both datasets. Cortical thicknesses of the left parahippocampal gyrus, left inferior parietal lobe, and right fusiform gyrus also significantly correlated with MMSE score in the ADNI dataset (p < 0.05). Conclusion: A positive correlation between right ERC thickness and MMSE score was identified from multi-country datasets.
UR - http://www.scopus.com/inward/record.url?scp=85110045135&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85110045135&partnerID=8YFLogxK
U2 - 10.1007/s00234-021-02767-y
DO - 10.1007/s00234-021-02767-y
M3 - Article
C2 - 34247261
AN - SCOPUS:85110045135
SN - 0028-3940
VL - 64
SP - 279
EP - 288
JO - Neuroradiology
JF - Neuroradiology
IS - 2
ER -