TY - JOUR
T1 - RNA-binding properties of HCF152, an Arabidopsis PPR protein involved in the processing of chloroplast RNA
AU - Nakamura, Takahiro
AU - Meierhoff, Karin
AU - Westhoff, Peter
AU - Schuster, Gadi
PY - 2003/10
Y1 - 2003/10
N2 - The nonphotosynthetic mutant of Arabidopsis hcf152 is impaired in the processing of the chloroplast polycistronic transcript, psbB-psbT-psbH-petB-petD, resulting in non-production of the essential photosynthetic cytochrome b6f complex. The nucleus-encoded HCF152 gene was identified to encode a pentatricopeptide repeat (PPR) protein composed primarily of 12 PPR motifs, similar to other proteins of this family that were identified in mutants defected in chloroplast gene expression. To understand the molecular mechanism of how HCF152 modulates chloroplast gene expression, the molecular and biochemical properties should be revealed. To this end, HCF152 and several truncated versions were produced in bacteria and analyzed for RNA-binding and protein-protein interaction. It was found that two HCF152 polypeptides bind to form a homodimer, and that this binding is impaired by a single amino acid substitute near the carboxyl terminus, replacing leucine with proline. Recombinant HCF152 bound with higher affinity RNA molecules, resembling the petB exon-intron junctions, as well as several other molecules. The highest affinity was found to RNA composed of the poly(A) sequence. When truncated proteins composed of different numbers of PPR motifs were analyzed for RNA-binding, it was found that two PPR motifs were required for RNA-binding, but had very low affinity. The affinity to RNA increased significantly when proteins composed of more PPR motifs were analyzed, displaying the highest affinity with the full-length protein composed of 12 PPR motifs. Together, our data characterized the nuclear-encoded HCF152 to be a chloroplast RNA-binding protein that may be involved in the processing or stabilization of the petB transcript by binding to the exonintron junctions.
AB - The nonphotosynthetic mutant of Arabidopsis hcf152 is impaired in the processing of the chloroplast polycistronic transcript, psbB-psbT-psbH-petB-petD, resulting in non-production of the essential photosynthetic cytochrome b6f complex. The nucleus-encoded HCF152 gene was identified to encode a pentatricopeptide repeat (PPR) protein composed primarily of 12 PPR motifs, similar to other proteins of this family that were identified in mutants defected in chloroplast gene expression. To understand the molecular mechanism of how HCF152 modulates chloroplast gene expression, the molecular and biochemical properties should be revealed. To this end, HCF152 and several truncated versions were produced in bacteria and analyzed for RNA-binding and protein-protein interaction. It was found that two HCF152 polypeptides bind to form a homodimer, and that this binding is impaired by a single amino acid substitute near the carboxyl terminus, replacing leucine with proline. Recombinant HCF152 bound with higher affinity RNA molecules, resembling the petB exon-intron junctions, as well as several other molecules. The highest affinity was found to RNA composed of the poly(A) sequence. When truncated proteins composed of different numbers of PPR motifs were analyzed for RNA-binding, it was found that two PPR motifs were required for RNA-binding, but had very low affinity. The affinity to RNA increased significantly when proteins composed of more PPR motifs were analyzed, displaying the highest affinity with the full-length protein composed of 12 PPR motifs. Together, our data characterized the nuclear-encoded HCF152 to be a chloroplast RNA-binding protein that may be involved in the processing or stabilization of the petB transcript by binding to the exonintron junctions.
UR - http://www.scopus.com/inward/record.url?scp=0142088891&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0142088891&partnerID=8YFLogxK
U2 - 10.1046/j.1432-1033.2003.03796.x
DO - 10.1046/j.1432-1033.2003.03796.x
M3 - Article
C2 - 14519118
AN - SCOPUS:0142088891
SN - 1742-464X
VL - 270
SP - 4070
EP - 4081
JO - FEBS Journal
JF - FEBS Journal
IS - 20
ER -