Robust simultaneous low rank approximation of tensors

Kohei Inoue, Hara Kenji, Kiichi Urahama

研究成果: Contribution to journalConference article査読

2 被引用数 (Scopus)

抄録

We propose simultaneous low rank approximation of tensors (SLRAT) for the dimensionality reduction of tensors and modify it to the robust one, i.e., the robust SLRAT. For both the SLRAT and the robust SLRAT, we propose iterative algorithms for solving them. It is experimentally shown that the robust SLRAT achieves lower reconstruction error than the SLRAT when a dataset contains noise data. We also propose a method for classifying sets of tensors and call it the subspace matching, where both training data and testing data are represented by their subspaces, and each testing datum is classified on the basis of the similarity between subspaces. It is experimentally verified that the robust SLRAT achieves higher recognition rate than the SLRAT when the testing data contain noise data.

本文言語英語
ページ(範囲)574-584
ページ数11
ジャーナルLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
5414 LNCS
DOI
出版ステータス出版済み - 2 19 2009
イベント3rd Pacific Rim Symposium on Image and Video Technology, PSIVT 2009 - Tokyo, 日本
継続期間: 1 13 20091 16 2009

All Science Journal Classification (ASJC) codes

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Robust simultaneous low rank approximation of tensors」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル