Role of Hydrogen-Bonding and OH-πInteractions in the Adhesion of Epoxy Resin on Hydrophilic Surfaces

研究成果: Contribution to journalArticle査読


Epoxy resin adhesives are widely used for joining metal alloys in various industrial fields. To elucidate the adhesion mechanism microscopically, we investigated the interfacial interactions of epoxy resin with hydroxylated silica (0 0 1) and γ-alumina (0 0 1) surfaces using periodic density functional theory calculations as well as density of states (DOS) and crystal orbital Hamilton population (COHP) analyses. To better understand the interfacial interactions, we employed and analyzed water and benzene molecules as hydrophilic and hydrophobic adsorbates, respectively. Structural features and calculated adhesion energies reveal that these small adsorbates have a higher affinity for the γ-alumina surface than that for the silica surface, while a fragmentary model for the epoxy resin exhibits a strong interaction with the silica surface. This discrepancy suggests that the structural features of the hydroxylated silica surface dictate its affinity to a specific species. Partial DOS and COHP curves provide evidence for the presence of OH-πinteractions between the OH groups on the surfaces and the benzene rings of the epoxy resin fragments. The orbital interaction energies of the H-bonding and OH-πinteractions evaluated from the integrated COHP indicate that the OH-πinteraction is a nonnegligible origin of the adhesion interaction, even when polymers with hydrophobic benzene rings are adsorbed on hydroxylated surfaces.

ジャーナルACS Omega
出版ステータス出版済み - 10 13 2020

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Chemical Engineering(all)

フィンガープリント 「Role of Hydrogen-Bonding and OH-πInteractions in the Adhesion of Epoxy Resin on Hydrophilic Surfaces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。