Rotation number and one-parameter families of circle diffeomorphisms

研究成果: Contribution to journalArticle査読

9 被引用数 (Scopus)

抄録

We consider one-parameter families of circle diffeomorphisms, f1(x) = f(x) + t(t C0(X, X) and A X a minimal set of f. We first introduce a new topological invariant, the D-function of a minimal set, by the investigation of the decomposition of the minimal set A under the action of fn n N. Then important properties about the invariant and the existence of minimal set with a given D-function in some subshift of finite type are discussed. Finally Sharkovskii's theorem is generalized to minimal sets of continuous mappings from the interval into itself.

本文言語英語
ページ(範囲)359-363
ページ数5
ジャーナルErgodic Theory and Dynamical Systems
12
2
DOI
出版ステータス出版済み - 1 1 1992
外部発表はい

All Science Journal Classification (ASJC) codes

  • Mathematics(all)
  • Applied Mathematics

フィンガープリント 「Rotation number and one-parameter families of circle diffeomorphisms」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル