Scaling hypothesis leading to generalized extended self-similarity in turbulence

Hirokazu Fujisaka, Yasuya Nakayama, Takeshi Watanabe, Siegfried Grossmann

研究成果: Contribution to journalArticle査読

9 被引用数 (Scopus)

抄録

A scaling hypothesis leading to generalized extended self-similarity (GESS) for velocity structure functions, valid for intermediate scales in isotropic, homogeneous turbulence, is proposed. By introducing an effective scale r̂, monotonically depending on the physical scale r, with the use of the large deviation theory, the asymptotic forms of the probability densities for the velocity differences ur and for the coarse-grained energy-dissipation rate fluctuations εr, compatible with this GESS, are proposed. The probability density for εr is shown to have the form P r(ε)∼ε-1(r̂/L) sr̂(zr̂(ε)) with zr̂(ε)=ln(ε/ εL)/ln(L/r̂), where L and εL are the stirring scale and the coarse-grained energy-dissipation rate over the scale L. The concave function Sr̂(z), the spectrum, plays the central role of the present approach. Comparing the results with numerical and experimental data, we explicitly obtain the fluctuation spectra Sr̂(z).

本文言語英語
論文番号046307
ジャーナルPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
65
4
DOI
出版ステータス出版済み - 4 1 2002
外部発表はい

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

フィンガープリント 「Scaling hypothesis leading to generalized extended self-similarity in turbulence」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル