Sea level changes mechanisms in the MPI-ESM under FAFMIP forcing conditions

Xiaolin Zhang, Sayantani Ojha, Armin Köhl, Helmuth Haak, Johann H. Jungclaus, Detlef Stammer

研究成果: ジャーナルへの寄稿学術誌査読

2 被引用数 (Scopus)


Mechanistic causes for sea level (SL) change patterns are analyzed as they emerge from the Coupled Model Intercomparison Project Phase 6 (CMIP6) endorsed Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) coupled climate experiments imposing individual forcing anomalies in wind stress, heatflux and freshwater flux to the Max-Planck-Institute Earth System Model (MPI-ESM). It appears that the heat flux perturbations have the largest effect on the sea level. In contrast, the direct impact of momentum and freshwater flux anomalies on SL anomalies appear to be limited to some region e.g. the Southern Ocean, Arctic Ocean and to some extent the North Pacific and North Atlantic Ocean. We find that thermosteric changes dominate the total SL change over large parts of the global ocean, except north of 60 °N where halosteric changes prevail. An analysis of added and redistributed components of heat and freshwater further suggests that the added component dominates the thermosteric SL and the redistributed component dominates the halosteric SL. Due to feedback processes a superposition of all forcing components together leads to the simulated sea level changes in each individual experiment. As a result, large surface heat flux anomalies over the Atlantic lead to wind stress change outside of the Atlantic through teleconnections, which in turn appear to be the primary driving agent for changes of sea level outside of the Atlantic in all three experiments. The associated wind driven Sverdrup stream function implicates that outside of the Atlantic most of the feedback can be explained by changes in the Sverdrup circulation.

ジャーナルClimate Dynamics
出版ステータス印刷中 - 2022

!!!All Science Journal Classification (ASJC) codes

  • 大気科学


「Sea level changes mechanisms in the MPI-ESM under FAFMIP forcing conditions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。