Seasonal variabilities in chemical compounds and acidity of aerosol particles at urban site in the west Pacific

Xiaole Pan, Itsushi Uno, Zhe Wang, Shigekazu Yamamoto, Yukari Hara, Zifa Wang

研究成果: ジャーナルへの寄稿記事

1 引用 (Scopus)

抄録

Mass concentrations of chemical compounds in both PM2.5 (particle aerodynamic diameter, Dp < 2.5 μm) and PM2.5-10 (2.5 < Dp < 10 μm), and acidity of aerosol particles were measured at an urban site in western Japan using a continuous dichotomous Aerosol Chemical Speciation Analyzer (ACSA-12) throughout 2014. Mass concentrations of both PM2.5 and sulfate had distinct seasonal variabilities with maxima in spring and winter, mostly due to long-range transport with the prevailing westerly wind. Mass concentration of nitrate in PM2.5 (fNO3) showed an obvious warm-season-low and cold-season-high pattern as a result of both gas-aerosol phase equilibrium processes under high temperature conditions as well as transport. Nitrate in PM2.5-10 (cNO3) increased during long-range transport of dust, implying the great importance of heterogeneous processes at the surface of coarse mode particles. In this study, Δ[H+] (derived from the difference in pH of extract liquid with/without sampling) was used to indicate the acidity of particles. We found that acidity of particles in PM2.5 (fΔH) was mostly positive with a maximum in August because of the large fraction of nitrate and sulfate. Acidity of particles in PM2.5-10 (cΔH) was negative in winter and spring due to presence of alkaline matter from crustal sources. This study highlights the great importance of anthropogenic pollutants on the acidity of particles in the western Pacific Ocean and further impact on the marine environment and climate. Meteorology and transport played a key role in the allocation of aerosol phase nitrate in PM2.5, PM2.5-10. Seasonal variability of acidity of PM2.5 was mainly attributed to fraction of water-soluble secondary inorganics and source regions.

元の言語英語
ページ(範囲)868-877
ページ数10
ジャーナルEnvironmental Pollution
237
DOI
出版物ステータス出版済み - 6 1 2018

Fingerprint

Chemical compounds
Aerosols
Acidity
Nitrates
Particles (particulate matter)
Sulfates
Meteorology
Pacific Ocean
Dust
Climate
Chemical speciation
Japan
Gases
Phase equilibria
Temperature
Water
Aerodynamics
Sampling
Liquids

All Science Journal Classification (ASJC) codes

  • Toxicology
  • Pollution
  • Health, Toxicology and Mutagenesis

これを引用

Seasonal variabilities in chemical compounds and acidity of aerosol particles at urban site in the west Pacific. / Pan, Xiaole; Uno, Itsushi; Wang, Zhe; Yamamoto, Shigekazu; Hara, Yukari; Wang, Zifa.

:: Environmental Pollution, 巻 237, 01.06.2018, p. 868-877.

研究成果: ジャーナルへの寄稿記事

@article{b453da77e98a493796ebc135b08492b3,
title = "Seasonal variabilities in chemical compounds and acidity of aerosol particles at urban site in the west Pacific",
abstract = "Mass concentrations of chemical compounds in both PM2.5 (particle aerodynamic diameter, Dp < 2.5 μm) and PM2.5-10 (2.5 < Dp < 10 μm), and acidity of aerosol particles were measured at an urban site in western Japan using a continuous dichotomous Aerosol Chemical Speciation Analyzer (ACSA-12) throughout 2014. Mass concentrations of both PM2.5 and sulfate had distinct seasonal variabilities with maxima in spring and winter, mostly due to long-range transport with the prevailing westerly wind. Mass concentration of nitrate in PM2.5 (fNO3) showed an obvious warm-season-low and cold-season-high pattern as a result of both gas-aerosol phase equilibrium processes under high temperature conditions as well as transport. Nitrate in PM2.5-10 (cNO3) increased during long-range transport of dust, implying the great importance of heterogeneous processes at the surface of coarse mode particles. In this study, Δ[H+] (derived from the difference in pH of extract liquid with/without sampling) was used to indicate the acidity of particles. We found that acidity of particles in PM2.5 (fΔH) was mostly positive with a maximum in August because of the large fraction of nitrate and sulfate. Acidity of particles in PM2.5-10 (cΔH) was negative in winter and spring due to presence of alkaline matter from crustal sources. This study highlights the great importance of anthropogenic pollutants on the acidity of particles in the western Pacific Ocean and further impact on the marine environment and climate. Meteorology and transport played a key role in the allocation of aerosol phase nitrate in PM2.5, PM2.5-10. Seasonal variability of acidity of PM2.5 was mainly attributed to fraction of water-soluble secondary inorganics and source regions.",
author = "Xiaole Pan and Itsushi Uno and Zhe Wang and Shigekazu Yamamoto and Yukari Hara and Zifa Wang",
year = "2018",
month = "6",
day = "1",
doi = "10.1016/j.envpol.2017.11.089",
language = "English",
volume = "237",
pages = "868--877",
journal = "Environmental Pollution",
issn = "0269-7491",
publisher = "Elsevier Limited",

}

TY - JOUR

T1 - Seasonal variabilities in chemical compounds and acidity of aerosol particles at urban site in the west Pacific

AU - Pan, Xiaole

AU - Uno, Itsushi

AU - Wang, Zhe

AU - Yamamoto, Shigekazu

AU - Hara, Yukari

AU - Wang, Zifa

PY - 2018/6/1

Y1 - 2018/6/1

N2 - Mass concentrations of chemical compounds in both PM2.5 (particle aerodynamic diameter, Dp < 2.5 μm) and PM2.5-10 (2.5 < Dp < 10 μm), and acidity of aerosol particles were measured at an urban site in western Japan using a continuous dichotomous Aerosol Chemical Speciation Analyzer (ACSA-12) throughout 2014. Mass concentrations of both PM2.5 and sulfate had distinct seasonal variabilities with maxima in spring and winter, mostly due to long-range transport with the prevailing westerly wind. Mass concentration of nitrate in PM2.5 (fNO3) showed an obvious warm-season-low and cold-season-high pattern as a result of both gas-aerosol phase equilibrium processes under high temperature conditions as well as transport. Nitrate in PM2.5-10 (cNO3) increased during long-range transport of dust, implying the great importance of heterogeneous processes at the surface of coarse mode particles. In this study, Δ[H+] (derived from the difference in pH of extract liquid with/without sampling) was used to indicate the acidity of particles. We found that acidity of particles in PM2.5 (fΔH) was mostly positive with a maximum in August because of the large fraction of nitrate and sulfate. Acidity of particles in PM2.5-10 (cΔH) was negative in winter and spring due to presence of alkaline matter from crustal sources. This study highlights the great importance of anthropogenic pollutants on the acidity of particles in the western Pacific Ocean and further impact on the marine environment and climate. Meteorology and transport played a key role in the allocation of aerosol phase nitrate in PM2.5, PM2.5-10. Seasonal variability of acidity of PM2.5 was mainly attributed to fraction of water-soluble secondary inorganics and source regions.

AB - Mass concentrations of chemical compounds in both PM2.5 (particle aerodynamic diameter, Dp < 2.5 μm) and PM2.5-10 (2.5 < Dp < 10 μm), and acidity of aerosol particles were measured at an urban site in western Japan using a continuous dichotomous Aerosol Chemical Speciation Analyzer (ACSA-12) throughout 2014. Mass concentrations of both PM2.5 and sulfate had distinct seasonal variabilities with maxima in spring and winter, mostly due to long-range transport with the prevailing westerly wind. Mass concentration of nitrate in PM2.5 (fNO3) showed an obvious warm-season-low and cold-season-high pattern as a result of both gas-aerosol phase equilibrium processes under high temperature conditions as well as transport. Nitrate in PM2.5-10 (cNO3) increased during long-range transport of dust, implying the great importance of heterogeneous processes at the surface of coarse mode particles. In this study, Δ[H+] (derived from the difference in pH of extract liquid with/without sampling) was used to indicate the acidity of particles. We found that acidity of particles in PM2.5 (fΔH) was mostly positive with a maximum in August because of the large fraction of nitrate and sulfate. Acidity of particles in PM2.5-10 (cΔH) was negative in winter and spring due to presence of alkaline matter from crustal sources. This study highlights the great importance of anthropogenic pollutants on the acidity of particles in the western Pacific Ocean and further impact on the marine environment and climate. Meteorology and transport played a key role in the allocation of aerosol phase nitrate in PM2.5, PM2.5-10. Seasonal variability of acidity of PM2.5 was mainly attributed to fraction of water-soluble secondary inorganics and source regions.

UR - http://www.scopus.com/inward/record.url?scp=85044263177&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85044263177&partnerID=8YFLogxK

U2 - 10.1016/j.envpol.2017.11.089

DO - 10.1016/j.envpol.2017.11.089

M3 - Article

VL - 237

SP - 868

EP - 877

JO - Environmental Pollution

JF - Environmental Pollution

SN - 0269-7491

ER -