Secure Division Protocol and Applications to Privacy-preserving Chi-squared Tests

Hiraku Morita, Nuttapong Attrapadung, Satsuya Ohata, Koji Nuida, Shota Yamada, Kana Shimizu, Goichiro Hanaoka, Kiyoshi Asai

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

3 被引用数 (Scopus)

抄録

We present a new secure integer division protocol with private divisor. Our protocol is based loosely on the Bogdanov et al. (Int. J. Inf. Secur.'12) protocol, which securely computes the classical Goldschmidt's division algorithm. While the Bogdanov et al. scheme was designed specifically to work only on a 3-out-of-3 secret sharing scheme, our scheme works on a 2-out-of-2 secret sharing scheme. This has an advantage since the latter setting is more widely used in the literature of secure computation, and our protocol can thus be used as an efficient building block in this setting. We implement our protocol in Python and provide its benchmark.As a main application of our division protocol, we implement a secure protocol for privacy-preserving chi-squared tests on genomic data. This demonstrates that the proposed protocol is suitable for the statistical analysis on sensitive data.

本文言語英語
ホスト出版物のタイトルProceedings of 2018 International Symposium on Information Theory and Its Applications, ISITA 2018
出版社Institute of Electrical and Electronics Engineers Inc.
ページ530-534
ページ数5
ISBN(電子版)9784885523182
DOI
出版ステータス出版済み - 3 8 2019
外部発表はい
イベント15th International Symposium on Information Theory and Its Applications, ISITA 2018 - Singapore, シンガポール
継続期間: 10 28 201810 31 2018

出版物シリーズ

名前Proceedings of 2018 International Symposium on Information Theory and Its Applications, ISITA 2018

会議

会議15th International Symposium on Information Theory and Its Applications, ISITA 2018
Countryシンガポール
CitySingapore
Period10/28/1810/31/18

All Science Journal Classification (ASJC) codes

  • Computer Science Applications
  • Information Systems

フィンガープリント 「Secure Division Protocol and Applications to Privacy-preserving Chi-squared Tests」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル