Securely Computing Clustering Coefficient for Outsourced Dynamic Encrypted Graph Data

Laltu Sardar, Gaurav Bansal, Sushmita Ruj, Kouichi Sakurai

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

抄録

Social networks are represented by graphs. Clustering coefficient is a measure of how closely knit the actors are. The higher the clustering coefficient of a node, the more is its importance in the network. When small enterprises, with low storage and computational power, want to outsource their data and computation to a third-party cloud, anonymization alone might not help to protect data privacy. Moreover, fear of data leak and misuse by unauthorized parties force the data owner to encrypt data before outsourcing to the cloud. This makes it difficult to perform queries on the data. It is necessary to design a technique that allows queries to be performed on encrypted outsourced graph data without leaking meaningful information.In this paper, we design a novel graph encryption technique that allows calculating clustering coefficient on the outsourced encrypted graph. The encryption also supports edge and neighborhood queries. To the best of our knowledge, these types of queries have not been possible together before efficiently on encrypted graphs. We show that the designed scheme is secure under chosen-query attack. Moreover, we implement a prototype of the scheme and test on real-life data. The implementation results show that the scheme is practical even for a large database.

本文言語英語
ホスト出版物のタイトル2021 International Conference on COMmunication Systems and NETworkS, COMSNETS 2021
出版社Institute of Electrical and Electronics Engineers Inc.
ページ465-473
ページ数9
ISBN(電子版)9781728191270
DOI
出版ステータス出版済み - 1 5 2021
イベント2021 International Conference on COMmunication Systems and NETworkS, COMSNETS 2021 - Bangalore, インド
継続期間: 1 5 20211 9 2021

出版物シリーズ

名前2021 International Conference on COMmunication Systems and NETworkS, COMSNETS 2021

会議

会議2021 International Conference on COMmunication Systems and NETworkS, COMSNETS 2021
国/地域インド
CityBangalore
Period1/5/211/9/21

All Science Journal Classification (ASJC) codes

  • コンピュータ ネットワークおよび通信
  • コンピュータ サイエンスの応用
  • ハードウェアとアーキテクチャ
  • 情報システムおよび情報管理
  • 安全性、リスク、信頼性、品質管理

フィンガープリント

「Securely Computing Clustering Coefficient for Outsourced Dynamic Encrypted Graph Data」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル