Selenium (Se) removal from copper refinery wastewater using a combination of zero-valent iron (ZVI) and Se(VI)-reducing bacterium, thaurea selenatis

Naoko Okibe, Kiyomasa Sueishi, Mikoto Koga, Yusei Masaki, Tsuyoshi Hirajima, Keiko Sasaki, Shinichi Heguri, Satoshi Asano

研究成果: Contribution to journalArticle査読

3 被引用数 (Scopus)

抄録

The copper refinery process produces Se(VI)-bearing wastewater with a high content of Cl- and SO42- ions. To overcome the negative effect caused by Cl- and SO42- ions on Se(VI) reduction and its following removal, this study investigated the possible synergistic effect of the combination of Se(VI)-reducing bacterium, Thaurea (T.) selenatis and zero-valent iron (ZVI). In the presence of SO42- (200mM) and Cl-(300 mM), the following was observed: (i) ZVI alone was unable to remove Se both under strictly aerobic and micro-aerobic conditions. (ii) Se(VI) reduction by T. selenatis alone was severely inhibited under anaerobic conditions (and thus no microbial growth was observed). (iii) On the other hand, T. selenatis was capable of growth and Se(VI) reduction under micro-aerobic conditions. (iv) Combining T. selenatis and ZVI under micro-aerobic conditions showed a synergistic effect on Se(VI) reduction, readily facilitating Se removal. This synergistic effect was optimized by adjusting the pH to near neutral (optimal for T. selenatis growth), but by adjusting the temperature to 35°C (sub-optimal for T. selenatis growth): Se removal of 55% by T. selenatis alone, was significantly improved to 98% by combining T. selenatis and ZVI. The proposed key process to display the synergistic effect on Se removal under micro-aerobic conditions is as follows: (i) Using the remaining dissolved O2 (DO) during the first hours, T. selenatis can overcome the inhibitory effect of Cl- and SO42- by growing with more energy-gaining aerobic respiration, (ii) ZVI indirectly serves as a reducing agent to maintain low DO levels, consequently readily switching from aerobic to anaerobic Se(VI) respiration by T. selenatis. (iii) ZVI may also be acting directly for Se deposition by reducing microbially-produced intermediate Se(IV), which is more reactive than original Se(VI). The present findings could be used as a basis for developing an economically feasible and environmentally harmless bio-treatment technology for Se(VI) containing copper refinery wastewaters.

本文言語英語
ページ(範囲)889-894
ページ数6
ジャーナルMaterials Transactions
56
6
DOI
出版ステータス出版済み - 2015

All Science Journal Classification (ASJC) codes

  • 材料科学(全般)
  • 凝縮系物理学
  • 材料力学
  • 機械工学

フィンガープリント

「Selenium (Se) removal from copper refinery wastewater using a combination of zero-valent iron (ZVI) and Se(VI)-reducing bacterium, thaurea selenatis」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル