Semi-automatic learning framework combining object detection and background subtraction

Sugino Nicolas Alejandro, Tsubasa Minematsu, Atsushi Shimada, Takashi Shibata, Rin Ichiro Taniguchi, Eiji Kaneko, Hiroyoshi Miyano

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

抜粋

Public datasets used to train modern object detection models do not contain all the object classes appearing in real-world surveillance scenes. Even if they appear, they might be vastly different. Therefore, object detectors implemented in the real world must accommodate unknown objects and adapt to the scene. We implemented a framework that combines background subtraction and unknown object detection to improve the pretrained detector’s performance and apply human intervention to review the detected objects to minimize the latent risk of introducing wrongly labeled samples to the training. The proposed system enhanced the original YOLOv3 object detector performance in almost all the metrics analyzed, and managed to incorporate new classes without losing previous training information.

元の言語英語
ホスト出版物のタイトルVISAPP
編集者Giovanni Maria Farinella, Petia Radeva, Jose Braz
出版者SciTePress
ページ96-106
ページ数11
ISBN(電子版)9789897584022
出版物ステータス出版済み - 1 1 2020
イベント15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2020 - Valletta, マルタ
継続期間: 2 27 20202 29 2020

出版物シリーズ

名前VISIGRAPP 2020 - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
5

会議

会議15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2020
マルタ
Valletta
期間2/27/202/29/20

All Science Journal Classification (ASJC) codes

  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Computer Vision and Pattern Recognition

フィンガープリント Semi-automatic learning framework combining object detection and background subtraction' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Alejandro, S. N., Minematsu, T., Shimada, A., Shibata, T., Taniguchi, R. I., Kaneko, E., & Miyano, H. (2020). Semi-automatic learning framework combining object detection and background subtraction. : G. M. Farinella, P. Radeva, & J. Braz (版), VISAPP (pp. 96-106). (VISIGRAPP 2020 - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications; 巻数 5). SciTePress.