Semi-galois Categories I: The Classical Eilenberg Variety Theory

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

1 被引用数 (Scopus)

抄録

Recently, Eilenberg's variety theorem was reformulated in the light of Stone's duality theorem. On one level, this reformulation led to a unification of several existing Eilenberg-type theorems and further generalizations of these theorems. On another level, this reformulation is also a natural continuation of a research line on profinite monoids that has been developed since the late 1980s. The current paper concerns the latter in particular. In this relation, this paper introduces and studies the class of semi-galois categories, i.e. an extension of galois categories; and develops a particularly fundamental theory concerning semi-galois categories: That is, (I) a duality theorem between profinite monoids and semi-galois categories; (II) a coherent duality-based reformulation of two classical Eilenbergtype variety theorems due to Straubing [30] and Chaubard et al. [10]; and (III) a Galois-type classification of closed subgroups of profinite monoids in terms of finite discrete cofibrations over semigalois categories.

本文言語英語
ホスト出版物のタイトルProceedings of the 31st Annual ACM-IEEE Symposium on Logic in Computer Science, LICS 2016
出版社Institute of Electrical and Electronics Engineers Inc.
ページ545-554
ページ数10
ISBN(電子版)9781450343916
DOI
出版ステータス出版済み - 7 5 2016
外部発表はい
イベント31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2016 - New York, 米国
継続期間: 7 5 20167 8 2016

出版物シリーズ

名前Proceedings - Symposium on Logic in Computer Science
05-08-July-2016
ISSN(印刷版)1043-6871

その他

その他31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2016
国/地域米国
CityNew York
Period7/5/167/8/16

All Science Journal Classification (ASJC) codes

  • ソフトウェア
  • 数学 (全般)

フィンガープリント

「Semi-galois Categories I: The Classical Eilenberg Variety Theory」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル