Semi-galois categories II: An arithmetic analogue of Christol's theorem

研究成果: Contribution to journalArticle査読

抄録

In connection with our previous work on semi-galois categories [1,2], this paper proves an arithmetic analogue of Christol's theorem concerning an automata-theoretic characterization of when a formal power series ξ=∑ξntn∈Fq[[t]] over finite field Fq is algebraic over the polynomial ring Fq[t]. There are by now several variants of Christol's theorem, all of which are concerned with rings of positive characteristic. This paper provides an arithmetic (or F1-) variant of Christol's theorem in the sense that it replaces the polynomial ring Fq[t] with the ring OK of integers of a number field K and the ring Fq[[t]] of formal power series with the ring of Witt vectors. We also study some related problems.

本文言語英語
ページ(範囲)539-568
ページ数30
ジャーナルJournal of Algebra
508
DOI
出版ステータス出版済み - 8 15 2018
外部発表はい

All Science Journal Classification (ASJC) codes

  • 代数と数論

フィンガープリント

「Semi-galois categories II: An arithmetic analogue of Christol's theorem」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル