TY - JOUR
T1 - Shear stress induces expression of vascular endothelial growth factor receptor Flk-1/KDR through the CT-rich Sp1 binding site
AU - Abumiya, Takeo
AU - Sasaguri, Toshiyuki
AU - Taba, Yoji
AU - Miwa, Yoshikazu
AU - Miyagi, Megumi
PY - 2002/6/29
Y1 - 2002/6/29
N2 - Fluid shear stress is 1 of the major factors that control gene expression in vascular endothelial cells. We investigated the role of shear stress in the regulation of the expression of fetal liver kinase-1/kinase domain region (Flk-1/KDR), a vascular endothelial growth factor receptor, by using human umbilical vein endothelial cells. Laminar shear stress (15 dyne/cm2) elevated Flk-1/KDR mRNA levels by ≈3-fold for 8 hours, and the expression was upregulated within the range of 5 to 40 dyne/cm2. Deletion analysis of the 5′-flanking region of the Flk-1/KDR gene promoter by use of a luciferase reporter vector revealed that a shear stress-responsive element resided in the sequence between -94 and -31 bp, which contained putative nuclear factor-κB, activator protein-2, and GC-rich Sp1 and CT-rich Sp1 binding sites. Electrophoretic mobility shift assay demonstrated that nuclear extract was bound to the GC-rich Sp1 sites and the CT-rich Sp1 site with a similar pattern. However, shear stress enhanced the DNA-protein interactions only on the CT-rich Sp1 site but not on the GC-rich Sp1 sites. A 3-bp mutation in the CT-rich Sp1 site eliminated the response to shear stress in electrophoretic mobility shift assay and luciferase reporter assay. These results suggest that shear stress induces Flk-1/KDR expression through the CT-rich Sp1 binding site.
AB - Fluid shear stress is 1 of the major factors that control gene expression in vascular endothelial cells. We investigated the role of shear stress in the regulation of the expression of fetal liver kinase-1/kinase domain region (Flk-1/KDR), a vascular endothelial growth factor receptor, by using human umbilical vein endothelial cells. Laminar shear stress (15 dyne/cm2) elevated Flk-1/KDR mRNA levels by ≈3-fold for 8 hours, and the expression was upregulated within the range of 5 to 40 dyne/cm2. Deletion analysis of the 5′-flanking region of the Flk-1/KDR gene promoter by use of a luciferase reporter vector revealed that a shear stress-responsive element resided in the sequence between -94 and -31 bp, which contained putative nuclear factor-κB, activator protein-2, and GC-rich Sp1 and CT-rich Sp1 binding sites. Electrophoretic mobility shift assay demonstrated that nuclear extract was bound to the GC-rich Sp1 sites and the CT-rich Sp1 site with a similar pattern. However, shear stress enhanced the DNA-protein interactions only on the CT-rich Sp1 site but not on the GC-rich Sp1 sites. A 3-bp mutation in the CT-rich Sp1 site eliminated the response to shear stress in electrophoretic mobility shift assay and luciferase reporter assay. These results suggest that shear stress induces Flk-1/KDR expression through the CT-rich Sp1 binding site.
UR - http://www.scopus.com/inward/record.url?scp=0036075106&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036075106&partnerID=8YFLogxK
U2 - 10.1161/01.ATV.0000018300.43492.83
DO - 10.1161/01.ATV.0000018300.43492.83
M3 - Article
C2 - 12067897
AN - SCOPUS:0036075106
VL - 22
SP - 907
EP - 913
JO - Arteriosclerosis, Thrombosis, and Vascular Biology
JF - Arteriosclerosis, Thrombosis, and Vascular Biology
SN - 1079-5642
IS - 6
ER -