Shock structures in time-averaged patterns for the Kuramoto-Sivashinsky equation

    研究成果: ジャーナルへの寄稿学術誌査読

    8 被引用数 (Scopus)

    抄録

    The time-averaged patterns of spatiotemporal chaos of Kuramoto-Sivashinsky equation were numerically studied. The equation was found to have fixed boundary conditions with a variable parameter (U). The averaged pattern was nearly zero if U was smaller than a critical value. If U was larger than a critical value, stationary shock patterns with oscillating tails appeared due to absolute stability between the critical values. The time averaged pattern was approximated with shock solution of Burgers equation and effective diffusion constant was calculated. The relation of width and height of shock structures was used in this estimation.

    本文言語英語
    ページ(範囲)8817-8819
    ページ数3
    ジャーナルPhysical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
    62
    6 B
    DOI
    出版ステータス出版済み - 12月 2000

    !!!All Science Journal Classification (ASJC) codes

    • 統計物理学および非線形物理学
    • 統計学および確率
    • 凝縮系物理学

    フィンガープリント

    「Shock structures in time-averaged patterns for the Kuramoto-Sivashinsky equation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル