Shortest reconfiguration of perfect matchings via alternating cycles

Takehiro Ito, Naonori Kakimura, Naoyuki Kamiyama, Yusuke Kobayashi, Yoshio Okamoto

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

抜粋

Motivated by adjacency in perfect matching polytopes, we study the shortest reconfiguration problem of perfect matchings via alternating cycles. Namely, we want to find a shortest sequence of perfect matchings which transforms one given perfect matching to another given perfect matching such that the symmetric difference of each pair of consecutive perfect matchings is a single cycle. The problem is equivalent to the combinatorial shortest path problem in perfect matching polytopes. We prove that the problem is NP-hard even when a given graph is planar or bipartite, but it can be solved in polynomial time when the graph is outerplanar.

元の言語英語
ホスト出版物のタイトル27th Annual European Symposium on Algorithms, ESA 2019
編集者Michael A. Bender, Ola Svensson, Grzegorz Herman
出版者Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN(電子版)9783959771245
DOI
出版物ステータス出版済み - 9 2019
イベント27th Annual European Symposium on Algorithms, ESA 2019 - Munich/Garching, ドイツ
継続期間: 9 9 20199 11 2019

出版物シリーズ

名前Leibniz International Proceedings in Informatics, LIPIcs
144
ISSN(印刷物)1868-8969

会議

会議27th Annual European Symposium on Algorithms, ESA 2019
ドイツ
Munich/Garching
期間9/9/199/11/19

All Science Journal Classification (ASJC) codes

  • Software

フィンガープリント Shortest reconfiguration of perfect matchings via alternating cycles' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Ito, T., Kakimura, N., Kamiyama, N., Kobayashi, Y., & Okamoto, Y. (2019). Shortest reconfiguration of perfect matchings via alternating cycles. : M. A. Bender, O. Svensson, & G. Herman (版), 27th Annual European Symposium on Algorithms, ESA 2019 [61] (Leibniz International Proceedings in Informatics, LIPIcs; 巻数 144). Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.ESA.2019.61