Shortest unique substring queries on run-length encoded strings

研究成果: 著書/レポートタイプへの貢献会議での発言

4 引用 (Scopus)

抄録

We consider the problem of answering shortest unique substring (SUS) queries on run-length encoded strings. For a string S, a unique substring u = S[i..j] is said to be a shortest unique substring (SUS) of S containing an interval [s, t] (i ≤ s ≤ t ≤ j) if for any i0 ≤ s ≤t ≤j0 with j - i > j0 - i0, S[i0..j0] occurs at least twice in S. Given a run-length encoding of size m of a string of length N, we show that we can construct a data structure of size O(m + πs(N,m)) in O(mlogm + πc(N,m)) time such that queries can be answered in O(πq(N,m) + k) time, where k is the size of the output (the number of SUSs), and πs(N,m), πc(N,m), πq(N,m) are, respectively, the size, construction time, and query time for a predecessor/successor query data structure of m elements for the universe of [1,N]. Using the data structure by Beam and Fich (JCSS 2002), this results in a data structure of O(m) space that is constructed in O(mlogm) time, and answers queries in O( √ log m/log logm + k) time.

元の言語英語
ホスト出版物のタイトル41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016
出版者Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
58
ISBN(電子版)9783959770163
DOI
出版物ステータス出版済み - 8 1 2016
イベント41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016 - Krakow, ポーランド
継続期間: 8 22 20168 26 2016

その他

その他41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016
ポーランド
Krakow
期間8/22/168/26/16

Fingerprint

Data structures

All Science Journal Classification (ASJC) codes

  • Software

これを引用

Mieno, T., Inenaga, S., Bannai, H., & Takeda, M. (2016). Shortest unique substring queries on run-length encoded strings. : 41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016 (巻 58). [69] Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.MFCS.2016.69

Shortest unique substring queries on run-length encoded strings. / Mieno, Takuya; Inenaga, Shunsuke; Bannai, Hideo; Takeda, Masayuki.

41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016. 巻 58 Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2016. 69.

研究成果: 著書/レポートタイプへの貢献会議での発言

Mieno, T, Inenaga, S, Bannai, H & Takeda, M 2016, Shortest unique substring queries on run-length encoded strings. : 41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016. 巻. 58, 69, Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016, Krakow, ポーランド, 8/22/16. https://doi.org/10.4230/LIPIcs.MFCS.2016.69
Mieno T, Inenaga S, Bannai H, Takeda M. Shortest unique substring queries on run-length encoded strings. : 41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016. 巻 58. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. 2016. 69 https://doi.org/10.4230/LIPIcs.MFCS.2016.69
Mieno, Takuya ; Inenaga, Shunsuke ; Bannai, Hideo ; Takeda, Masayuki. / Shortest unique substring queries on run-length encoded strings. 41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016. 巻 58 Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2016.
@inproceedings{c5d2a3e36bd74a47b11140ecb6b872d3,
title = "Shortest unique substring queries on run-length encoded strings",
abstract = "We consider the problem of answering shortest unique substring (SUS) queries on run-length encoded strings. For a string S, a unique substring u = S[i..j] is said to be a shortest unique substring (SUS) of S containing an interval [s, t] (i ≤ s ≤ t ≤ j) if for any i0 ≤ s ≤t ≤j0 with j - i > j0 - i0, S[i0..j0] occurs at least twice in S. Given a run-length encoding of size m of a string of length N, we show that we can construct a data structure of size O(m + πs(N,m)) in O(mlogm + πc(N,m)) time such that queries can be answered in O(πq(N,m) + k) time, where k is the size of the output (the number of SUSs), and πs(N,m), πc(N,m), πq(N,m) are, respectively, the size, construction time, and query time for a predecessor/successor query data structure of m elements for the universe of [1,N]. Using the data structure by Beam and Fich (JCSS 2002), this results in a data structure of O(m) space that is constructed in O(mlogm) time, and answers queries in O( √ log m/log logm + k) time.",
author = "Takuya Mieno and Shunsuke Inenaga and Hideo Bannai and Masayuki Takeda",
year = "2016",
month = "8",
day = "1",
doi = "10.4230/LIPIcs.MFCS.2016.69",
language = "English",
volume = "58",
booktitle = "41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016",
publisher = "Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing",

}

TY - GEN

T1 - Shortest unique substring queries on run-length encoded strings

AU - Mieno, Takuya

AU - Inenaga, Shunsuke

AU - Bannai, Hideo

AU - Takeda, Masayuki

PY - 2016/8/1

Y1 - 2016/8/1

N2 - We consider the problem of answering shortest unique substring (SUS) queries on run-length encoded strings. For a string S, a unique substring u = S[i..j] is said to be a shortest unique substring (SUS) of S containing an interval [s, t] (i ≤ s ≤ t ≤ j) if for any i0 ≤ s ≤t ≤j0 with j - i > j0 - i0, S[i0..j0] occurs at least twice in S. Given a run-length encoding of size m of a string of length N, we show that we can construct a data structure of size O(m + πs(N,m)) in O(mlogm + πc(N,m)) time such that queries can be answered in O(πq(N,m) + k) time, where k is the size of the output (the number of SUSs), and πs(N,m), πc(N,m), πq(N,m) are, respectively, the size, construction time, and query time for a predecessor/successor query data structure of m elements for the universe of [1,N]. Using the data structure by Beam and Fich (JCSS 2002), this results in a data structure of O(m) space that is constructed in O(mlogm) time, and answers queries in O( √ log m/log logm + k) time.

AB - We consider the problem of answering shortest unique substring (SUS) queries on run-length encoded strings. For a string S, a unique substring u = S[i..j] is said to be a shortest unique substring (SUS) of S containing an interval [s, t] (i ≤ s ≤ t ≤ j) if for any i0 ≤ s ≤t ≤j0 with j - i > j0 - i0, S[i0..j0] occurs at least twice in S. Given a run-length encoding of size m of a string of length N, we show that we can construct a data structure of size O(m + πs(N,m)) in O(mlogm + πc(N,m)) time such that queries can be answered in O(πq(N,m) + k) time, where k is the size of the output (the number of SUSs), and πs(N,m), πc(N,m), πq(N,m) are, respectively, the size, construction time, and query time for a predecessor/successor query data structure of m elements for the universe of [1,N]. Using the data structure by Beam and Fich (JCSS 2002), this results in a data structure of O(m) space that is constructed in O(mlogm) time, and answers queries in O( √ log m/log logm + k) time.

UR - http://www.scopus.com/inward/record.url?scp=85012892239&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85012892239&partnerID=8YFLogxK

U2 - 10.4230/LIPIcs.MFCS.2016.69

DO - 10.4230/LIPIcs.MFCS.2016.69

M3 - Conference contribution

VL - 58

BT - 41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016

PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing

ER -