SIGNIFICANCE OF THE UNIVERSAL THIRD POWER STRESS DEPENDENCE FOR THE STEADY-STATE CREEP RATE.

Zenji Horita, Terence G. Langdon

    研究成果: Chapter in Book/Report/Conference proceedingConference contribution

    11 被引用数 (Scopus)

    抄録

    There are two basic forms of equation relating the steady-state creep rate, epsilon , to the applied stress, sigma , with the stress incorporated either as sigma **n or as ( sigma minus sigma //o)**n degree where n and n//o are the appropriate stress exponents and sigma //o is a threshold or friction stress. The implications of these two relationships are examined and it is demonstrated that, although there are a range of values for (n,log//1//0A) lying on straight lines which may have different slopes for different materials, all lines pass through a unique point given by (n//o,log//1//0A//o) equal to (3,0), where A and A//o are the dimensionless constants in the two different equations for epsilon . It is concluded that there is a universal creep equation with a third power stress dependence which applies to all crystalline materials in the power-law creep regime.

    本文言語英語
    ホスト出版物のタイトルUnknown Host Publication Title
    編集者B. Wilshire, D.R.J. Owen
    出版社Pineridge Press Ltd
    ページ75-87
    ページ数13
    pt 1
    ISBN(印刷版)0906674379
    出版ステータス出版済み - 12 1 1984

    出版物シリーズ

    名前
    番号pt 1

    All Science Journal Classification (ASJC) codes

    • 工学(全般)

    フィンガープリント

    「SIGNIFICANCE OF THE UNIVERSAL THIRD POWER STRESS DEPENDENCE FOR THE STEADY-STATE CREEP RATE.」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル