Simulation of fine gain tuning using genetic algorithms for model-based robotic servo controllers

Fusaomi Nagata, Katsutoshi Kuribayashi, Kazuo Kiguchi, Keigo Watanabe

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

13 被引用数 (Scopus)

抄録

Resolved acceleration control method or computed torque method is used for nonlinear control of industrial manipulators, which is composed of a model base portion and a servo portion. The servo portion is a close loop with respect to the position and velocity. On the other hand, the model base portion has the inertia term, gravity term and centrifugal/Coriolis term, which work for canceling the nonlinearity of manipulator. In order to realize high control stability, the position and velocity gains used in the servo portion should be selected suitably. In this paper, a simple but effective fine tuning method after manual tuning is introduced for the position and velocity feedback gains in the servo portion. At the first step, base values of the gains are roughly selected by a controller designer, e.g., considering the critically damped condition. After that, the base values are finely tuned by genetic algorithms. Genetic algorithms search for the better combination of the position and velocity gains. Simulations are conducted using a dynamic model of PUMA560 manipulator to validate the effectiveness of the proposed method.

本文言語英語
ホスト出版物のタイトルProceedings of the 2007 IEEE International Symposium on Computational Intelligence in Robotics and Automation, CIRA 2007
ページ196-201
ページ数6
DOI
出版ステータス出版済み - 2007
外部発表はい
イベント2007 IEEE International Symposium on Computational Intelligence in Robotics and Automation, CIRA 2007 - Jacksonville, FL, 米国
継続期間: 6月 20 20076月 23 2007

出版物シリーズ

名前Proceedings of the 2007 IEEE International Symposium on Computational Intelligence in Robotics and Automation, CIRA 2007

その他

その他2007 IEEE International Symposium on Computational Intelligence in Robotics and Automation, CIRA 2007
国/地域米国
CityJacksonville, FL
Period6/20/076/23/07

!!!All Science Journal Classification (ASJC) codes

  • 人工知能
  • ソフトウェア
  • 制御およびシステム工学
  • 電子工学および電気工学

フィンガープリント

「Simulation of fine gain tuning using genetic algorithms for model-based robotic servo controllers」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル