Simulation of water-soil-structure interactions using incompressible smoothed particle hydrodynamics

Abdelraheem M. Aly, Mitsuteru Asai, Ehab Mahmoud Mohamed

研究成果: ジャーナルへの寄稿学術誌査読

2 被引用数 (Scopus)


In the present work, an incompressible smoothed particle hydrodynamic (SPH) method is introduced to simulate water-soil-structure interactions. In the current calculation, the water is modelled as a Newtonian fluid. The soil is modelled in two different cases. In the first case, the granular material is considered as a fluid where a Bingham type constitutive model is proposed based on Mohr-Coulomb yield-stress criterion, and the viscosity is derived from the cohesion and friction angle. In addition, the fictitious suspension layers between water and soil depending on the concentration of soil are introduced. In the second case, Hooke's law introduces elastic soil. In ISPH, the pressure is evaluated by solving the pressure Poisson equation using a semi-implicit algorithm based on the projection method and an eddy viscosity for water is modelled by a large eddy simulation with the Smagorinsky model. In the proposed ISPH method, the pressure is stabilized to simulate the multiphase flow between soil and water. Numerical experiments for water-soil suspension flow of Louvain erosional dam break with flat soil foundation, is simulated and validated using 3D-ISPH method. Coupling between water-soil interactions with different solid structures are simulated. The results revealed that, the suspension layers with the Bingham model of soil gives more accurate results in the experiment as compared to the case of the Bingham model without suspension layers. In addition, the elastic soil model by the Hooke's law can simulate soil hump accurately as compared to the Bingham model. From the simulations, avoiding erosion behind the structure for preventing the structure break during flood are investigated by using an extended structure or a wedge structure.

ジャーナルComputers, Materials and Continua
出版ステータス出版済み - 7月 23 2020

!!!All Science Journal Classification (ASJC) codes

  • 生体材料
  • モデリングとシミュレーション
  • 材料力学
  • コンピュータ サイエンスの応用
  • 電子工学および電気工学


「Simulation of water-soil-structure interactions using incompressible smoothed particle hydrodynamics」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。