Skein theory and topological quantum registers: Braiding matrices and topological entanglement entropy of non-Abelian quantum Hall states

研究成果: Contribution to journalArticle査読

22 被引用数 (Scopus)

抄録

We study topological properties of quasi-particle states in the non-Abelian quantum Hall states. We apply a skein-theoretic method to the Read-Rezayi state whose effective theory is the SU(2)K Chern-Simons theory. As a generalization of the Pfaffian (K = 2) and the Fibonacci (K = 3) anyon states, we compute the braiding matrices of quasi-particle states with arbitrary spins. Furthermore we propose a method to compute the entanglement entropy skein-theoretically. We find that the entanglement entropy has a nontrivial contribution called the topological entanglement entropy which depends on the quantum dimension of non-Abelian quasi-particle intertwining two subsystems.

本文言語英語
ページ(範囲)1729-1769
ページ数41
ジャーナルAnnals of Physics
323
7
DOI
出版ステータス出版済み - 7 2008
外部発表はい

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

フィンガープリント 「Skein theory and topological quantum registers: Braiding matrices and topological entanglement entropy of non-Abelian quantum Hall states」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル