Slow decay of infection in the inhomogeneous susceptible-infected-recovered model

研究成果: Contribution to journalArticle査読

1 被引用数 (Scopus)

抄録

The susceptible-infected-recovered (SIR) model with spatially inhomogeneous infection rate is studied with numerical simulations in one, two, and three dimensions, considering the case that the infection spreads inhomogeneously in densely populated regions or hot spots. We find that the total population of infection decays very slowly in the inhomogeneous systems in some cases, in contrast to the exponential decay of the infected population I(t) in the SIR model of the ordinary differential equation. The slow decay of the infected population suggests that the infection is locally maintained for long and it is difficult for the disease to disappear completely.

本文言語英語
論文番号012301
ジャーナルPhysical Review E
103
1
DOI
出版ステータス出版済み - 1 2021

All Science Journal Classification (ASJC) codes

  • 統計物理学および非線形物理学
  • 統計学および確率
  • 凝縮系物理学

フィンガープリント

「Slow decay of infection in the inhomogeneous susceptible-infected-recovered model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル