## 抄録

The equations of an electrically conducting compressible fluid in electro-magneto-fluid dynamics are studied. It is proved that in a certain case of two-dimensional flow, the equations of the fluid become a symmetric hyperbolic-parabolic system in both of the viscous and non-viscous cases. Therefore, the initial value problem is well posed in the Sobolev spaces at least for short time interval. Furthermore, in the viscous case, the solution exists globally in time and tends to the constant state as time goes to infinity, provided the initial data are closed to the constant state. The proof is based on a technical energy method, which makes use of a quadratic function associated with the total energy of the fluid.

本文言語 | 英語 |
---|---|

ページ（範囲） | 207-222 |

ページ数 | 16 |

ジャーナル | Japan Journal of Applied Mathematics |

巻 | 1 |

号 | 1 |

DOI | |

出版ステータス | 出版済み - 9 1 1984 |

## All Science Journal Classification (ASJC) codes

- Engineering(all)
- Applied Mathematics