Sn doping effect on NiO hollow nanofibers based gas sensors about the humidity dependence for triethylamine detection

Jiaqi Yang, Wenjiang Han, Jian Ma, Chong Wang, Kengo Shimanoe, Sumei Zhang, Yanfeng Sun, Pengfei Cheng, Yinglin Wang, Hong Zhang, Geyu Lu

研究成果: Contribution to journalArticle査読

7 被引用数 (Scopus)

抄録

High stable triethylamine gas sensors under different relative humidity are highly desirable in order to correctly detect the concentrations of target gas. In this study, a series of Sn-doped NiO hollow nanofibers were prepared through a facile electrospinning process followed by heat treatment. Sn doping could inhibit the crystal growth, and the crystal sizes would decrease with the increase of Sn doping concentration. Gas sensing investigation indicates that Sn doping could significantly enhance the gas response towards triethylamine at a relative low temperature. Especially, the gas sensor exhibits the highest response to triethylamine when the doping content of Sn reaches to 6 at%. The response value is about 16.6–100 ppm triethylamine, and it is ∼9.2 times higher than that of pure NiO nanofibers at the same operating temperature. In addition, the resistances of the gas sensors with different doping contents of Sn would change differently in air or in target gas under variable relative humidity. The resistances in target gas are almost unchanged with the increase of relative humidity with the Sn doping content of 6 at%. It is reasonable to speculate that Sn doping can heavily alter the surface state of NiO nanofibers, which is beneficial for the improvement of the gas response and humidity dependence properties.

本文言語英語
論文番号129971
ジャーナルSensors and Actuators, B: Chemical
340
DOI
出版ステータス出版済み - 8 1 2021

All Science Journal Classification (ASJC) codes

  • 電子材料、光学材料、および磁性材料
  • 器械工学
  • 凝縮系物理学
  • 表面、皮膜および薄膜
  • 金属および合金
  • 電子工学および電気工学
  • 材料化学

フィンガープリント

「Sn doping effect on NiO hollow nanofibers based gas sensors about the humidity dependence for triethylamine detection」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル