Software updates in the illumina hiseq platform affect whole-genome bisulfite sequencing

Hidehiro Toh, Kenjiro Shirane, Fumihito Miura, Naoki Kubo, Kenji Ichiyanagi, Katsuhiko Hayashi, Mitinori Saitou, Mikita Suyama, Takashi Ito, Hiroyuki Sasaki

研究成果: ジャーナルへの寄稿記事

7 引用 (Scopus)

抄録

Background: Methylation of cytosine in genomic DNA is a well-characterized epigenetic modification involved in many cellular processes and diseases. Whole-genome bisulfite sequencing (WGBS), such as MethylC-seq and post-bisulfite adaptor tagging sequencing (PBAT-seq), uses the power of high-throughput DNA sequencers and provides genome-wide DNA methylation profiles at single-base resolution. However, the accuracy and consistency of WGBS outputs in relation to the operating conditions of high-throughput sequencers have not been explored. Results: We have used the Illumina HiSeq platform for our PBAT-based WGBS, and found that different versions of HiSeq Control Software (HCS) and Real-Time Analysis (RTA) installed on the system provided different global CpG methylation levels (approximately 5% overall difference) for the same libraries. This problem was reproduced multiple times with different WGBS libraries and likely to be associated with the low sequence diversity of bisulfite-converted DNA. We found that HCS was the major determinant in the observed differences. To determine which version of HCS is most suitable for WGBS, we used substrates with predetermined CpG methylation levels, and found that HCS v2.0.5 is the best among the examined versions. HCS v2.0.12 showed the poorest performance and provided artificially lower CpG methylation levels when 5-methylcytosine is read as guanine (first read of PBAT-seq and second read of MethylC-seq). In addition, paired-end sequencing of low diversity libraries using HCS v2.2.38 or the latest HCS v2.2.58 was greatly affected by cluster densities. Conclusions: Software updates in the Illumina HiSeq platform can affect the outputs from low-diversity sequencing libraries such as WGBS libraries. More recent versions are not necessarily the better, and HCS v2.0.5 is currently the best for WGBS among the examined HCS versions. Thus, together with other experimental conditions, special care has to be taken on this point when CpG methylation levels are to be compared between different samples by WGBS.

元の言語英語
記事番号31
ジャーナルBMC Genomics
18
発行部数1
DOI
出版物ステータス出版済み - 1 5 2017

Fingerprint

Software
Genome
Methylation
Libraries
DNA
hydrogen sulfite
5-Methylcytosine
Cytosine
Guanine
DNA Methylation
Epigenomics

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Genetics

これを引用

Software updates in the illumina hiseq platform affect whole-genome bisulfite sequencing. / Toh, Hidehiro; Shirane, Kenjiro; Miura, Fumihito; Kubo, Naoki; Ichiyanagi, Kenji; Hayashi, Katsuhiko; Saitou, Mitinori; Suyama, Mikita; Ito, Takashi; Sasaki, Hiroyuki.

:: BMC Genomics, 巻 18, 番号 1, 31, 05.01.2017.

研究成果: ジャーナルへの寄稿記事

@article{1b8a49b2e3874a8aa4b9891a8d666dd6,
title = "Software updates in the illumina hiseq platform affect whole-genome bisulfite sequencing",
abstract = "Background: Methylation of cytosine in genomic DNA is a well-characterized epigenetic modification involved in many cellular processes and diseases. Whole-genome bisulfite sequencing (WGBS), such as MethylC-seq and post-bisulfite adaptor tagging sequencing (PBAT-seq), uses the power of high-throughput DNA sequencers and provides genome-wide DNA methylation profiles at single-base resolution. However, the accuracy and consistency of WGBS outputs in relation to the operating conditions of high-throughput sequencers have not been explored. Results: We have used the Illumina HiSeq platform for our PBAT-based WGBS, and found that different versions of HiSeq Control Software (HCS) and Real-Time Analysis (RTA) installed on the system provided different global CpG methylation levels (approximately 5{\%} overall difference) for the same libraries. This problem was reproduced multiple times with different WGBS libraries and likely to be associated with the low sequence diversity of bisulfite-converted DNA. We found that HCS was the major determinant in the observed differences. To determine which version of HCS is most suitable for WGBS, we used substrates with predetermined CpG methylation levels, and found that HCS v2.0.5 is the best among the examined versions. HCS v2.0.12 showed the poorest performance and provided artificially lower CpG methylation levels when 5-methylcytosine is read as guanine (first read of PBAT-seq and second read of MethylC-seq). In addition, paired-end sequencing of low diversity libraries using HCS v2.2.38 or the latest HCS v2.2.58 was greatly affected by cluster densities. Conclusions: Software updates in the Illumina HiSeq platform can affect the outputs from low-diversity sequencing libraries such as WGBS libraries. More recent versions are not necessarily the better, and HCS v2.0.5 is currently the best for WGBS among the examined HCS versions. Thus, together with other experimental conditions, special care has to be taken on this point when CpG methylation levels are to be compared between different samples by WGBS.",
author = "Hidehiro Toh and Kenjiro Shirane and Fumihito Miura and Naoki Kubo and Kenji Ichiyanagi and Katsuhiko Hayashi and Mitinori Saitou and Mikita Suyama and Takashi Ito and Hiroyuki Sasaki",
year = "2017",
month = "1",
day = "5",
doi = "10.1186/s12864-016-3392-9",
language = "English",
volume = "18",
journal = "BMC Genomics",
issn = "1471-2164",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - Software updates in the illumina hiseq platform affect whole-genome bisulfite sequencing

AU - Toh, Hidehiro

AU - Shirane, Kenjiro

AU - Miura, Fumihito

AU - Kubo, Naoki

AU - Ichiyanagi, Kenji

AU - Hayashi, Katsuhiko

AU - Saitou, Mitinori

AU - Suyama, Mikita

AU - Ito, Takashi

AU - Sasaki, Hiroyuki

PY - 2017/1/5

Y1 - 2017/1/5

N2 - Background: Methylation of cytosine in genomic DNA is a well-characterized epigenetic modification involved in many cellular processes and diseases. Whole-genome bisulfite sequencing (WGBS), such as MethylC-seq and post-bisulfite adaptor tagging sequencing (PBAT-seq), uses the power of high-throughput DNA sequencers and provides genome-wide DNA methylation profiles at single-base resolution. However, the accuracy and consistency of WGBS outputs in relation to the operating conditions of high-throughput sequencers have not been explored. Results: We have used the Illumina HiSeq platform for our PBAT-based WGBS, and found that different versions of HiSeq Control Software (HCS) and Real-Time Analysis (RTA) installed on the system provided different global CpG methylation levels (approximately 5% overall difference) for the same libraries. This problem was reproduced multiple times with different WGBS libraries and likely to be associated with the low sequence diversity of bisulfite-converted DNA. We found that HCS was the major determinant in the observed differences. To determine which version of HCS is most suitable for WGBS, we used substrates with predetermined CpG methylation levels, and found that HCS v2.0.5 is the best among the examined versions. HCS v2.0.12 showed the poorest performance and provided artificially lower CpG methylation levels when 5-methylcytosine is read as guanine (first read of PBAT-seq and second read of MethylC-seq). In addition, paired-end sequencing of low diversity libraries using HCS v2.2.38 or the latest HCS v2.2.58 was greatly affected by cluster densities. Conclusions: Software updates in the Illumina HiSeq platform can affect the outputs from low-diversity sequencing libraries such as WGBS libraries. More recent versions are not necessarily the better, and HCS v2.0.5 is currently the best for WGBS among the examined HCS versions. Thus, together with other experimental conditions, special care has to be taken on this point when CpG methylation levels are to be compared between different samples by WGBS.

AB - Background: Methylation of cytosine in genomic DNA is a well-characterized epigenetic modification involved in many cellular processes and diseases. Whole-genome bisulfite sequencing (WGBS), such as MethylC-seq and post-bisulfite adaptor tagging sequencing (PBAT-seq), uses the power of high-throughput DNA sequencers and provides genome-wide DNA methylation profiles at single-base resolution. However, the accuracy and consistency of WGBS outputs in relation to the operating conditions of high-throughput sequencers have not been explored. Results: We have used the Illumina HiSeq platform for our PBAT-based WGBS, and found that different versions of HiSeq Control Software (HCS) and Real-Time Analysis (RTA) installed on the system provided different global CpG methylation levels (approximately 5% overall difference) for the same libraries. This problem was reproduced multiple times with different WGBS libraries and likely to be associated with the low sequence diversity of bisulfite-converted DNA. We found that HCS was the major determinant in the observed differences. To determine which version of HCS is most suitable for WGBS, we used substrates with predetermined CpG methylation levels, and found that HCS v2.0.5 is the best among the examined versions. HCS v2.0.12 showed the poorest performance and provided artificially lower CpG methylation levels when 5-methylcytosine is read as guanine (first read of PBAT-seq and second read of MethylC-seq). In addition, paired-end sequencing of low diversity libraries using HCS v2.2.38 or the latest HCS v2.2.58 was greatly affected by cluster densities. Conclusions: Software updates in the Illumina HiSeq platform can affect the outputs from low-diversity sequencing libraries such as WGBS libraries. More recent versions are not necessarily the better, and HCS v2.0.5 is currently the best for WGBS among the examined HCS versions. Thus, together with other experimental conditions, special care has to be taken on this point when CpG methylation levels are to be compared between different samples by WGBS.

UR - http://www.scopus.com/inward/record.url?scp=85008392669&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85008392669&partnerID=8YFLogxK

U2 - 10.1186/s12864-016-3392-9

DO - 10.1186/s12864-016-3392-9

M3 - Article

C2 - 28056787

AN - SCOPUS:85008392669

VL - 18

JO - BMC Genomics

JF - BMC Genomics

SN - 1471-2164

IS - 1

M1 - 31

ER -