Soliton lattices in the Gross–Pitaevskii equation with nonlocal and repulsive coupling

研究成果: Contribution to journalArticle査読

1 被引用数 (Scopus)

抄録

Spatially-periodic patterns are studied in nonlocally coupled Gross–Pitaevskii equation. We show first that spatially periodic patterns appear in a model with the dipole–dipole interaction. Next, we study a model with a finite-range coupling, and show that a repulsively coupled system is closely related with an attractively coupled system and its soliton solution becomes a building block of the spatially-periodic structure. That is, the spatially-periodic structure can be interpreted as a soliton lattice. An approximate form of the soliton is given by a variational method. Furthermore, the effects of the rotating harmonic potential and spin-orbit coupling are numerically studied.

本文言語英語
ページ(範囲)1132-1137
ページ数6
ジャーナルPhysics Letters, Section A: General, Atomic and Solid State Physics
383
11
DOI
出版ステータス出版済み - 3 25 2019

All Science Journal Classification (ASJC) codes

  • 物理学および天文学(全般)

フィンガープリント

「Soliton lattices in the Gross–Pitaevskii equation with nonlocal and repulsive coupling」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル