Solving a 676-bit discrete logarithm problem in GF(36n)

Takuya Hayashi, Naoyuki Shinohara, Lihua Wang, Shin'ichiro Matsuo, Masaaki Shirase, Tsuyoshi Takagi

研究成果: ジャーナルへの寄稿学術誌査読

4 被引用数 (Scopus)

抄録

Pairings on elliptic curves over finite fields are crucial for constructing various cryptographic schemes. The ηT pairing on supersingular curves over GF(3n) is particularly popular since it is efficiently implementable. Taking into account the Menezes-Okamoto-Vanstone attack, the discrete logarithm problem (DLP) in GF(36n) becomes a concern for the security of cryptosystems using ηT pairings in this case. In 2006, Joux and Lercier proposed a new variant of the function field sieve in the medium prime case, named JL06-FFS. We have, however, not yet found any practical implementations on JL06-FFS over GF(36n). Therefore, we first fulfill such an implementation and we successfully set a new record for solving the DLP in GF(36n), the DLP in GF(36.71) of 676-bit size. In addition, we also compare JL06-FFS and an earlier version, named JL02-FFS, with practical experiments. Our results confirm that the former is several times faster than the latter under certain conditions.

本文言語英語
ページ(範囲)204-212
ページ数9
ジャーナルIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
E-95-A
1
DOI
出版ステータス出版済み - 1月 2012

!!!All Science Journal Classification (ASJC) codes

  • 信号処理
  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • 電子工学および電気工学
  • 応用数学

フィンガープリント

「Solving a 676-bit discrete logarithm problem in GF(36n)」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル