Specific basic patch-dependent multimerization of Saccharomyces cerevisiae ORC on single-stranded DNA promotes ATP hydrolysis

Hironori Kawakami, Ryuya Muraoka, Eiji Ohashi, Kenta Kawabata, Shota Kanamoto, Takeaki Chichibu, Toshiki Tsurimoto, Tsutomu Katayama

研究成果: ジャーナルへの寄稿記事

抜粋

Replication initiation at specific genomic loci dictates precise duplication and inheritance of genetic information. In eukaryotic cells, ATP-bound origin recognition complexes (ORCs) stably bind to double-stranded (ds) DNA origins to recruit the replicative helicase onto the origin DNA. To achieve these processes, an essential region of the origin DNA must be recognized by the eukaryotic origin sensor (EOS) basic patch within the disordered domain of the largest ORC subunit, Orc1. Although ORC also binds single-stranded (ss) DNA in an EOS-independent manner, it is unknown whether EOS regulates ORC on ssDNA. We found that, in budding yeast, ORC multimerizes on ssDNA in vitro independently of adenine nucleotides. We also found that the ORC multimers form in an EOS-dependent manner and stimulate the ORC ATPase activity. An analysis of genomics data supported the idea that ORC-ssDNA binding occurs in vivo at specific genomic loci outside of replication origins. These results suggest that EOS function is differentiated by ORC-bound ssDNA, which promotes ORC self-assembly and ATP hydrolysis. These mechanisms could modulate ORC activity at specific genomic loci and could be conserved among eukaryotes.

元の言語英語
ページ(範囲)608-618
ページ数11
ジャーナルGenes to Cells
24
発行部数9
DOI
出版物ステータス出版済み - 9 1 2019

    フィンガープリント

All Science Journal Classification (ASJC) codes

  • Genetics
  • Cell Biology

これを引用