Spectrum of the semi-relativistic Pauli-Fierz model I

研究成果: Contribution to journalArticle査読

2 被引用数 (Scopus)

抄録

A HVZ type theorem for the semi-relativistic Pauli-Fierz Hamiltonian,H=(p⊗1-A)2+M2⊗1+V⊗1+1⊗Hf,M≥0, in quantum electrodynamics is studied. Here H is a self-adjoint operator in Hilbert space L2(Rd)⊗F≅∫Rd⊕Fdx, A=∫Rd⊕A(x)dx is a quantized radiation field and Hf is the free field Hamiltonian defined by the second quantization of a dispersion relation ω:Rd→R. It is emphasized that massless case, M=0, is included. Let E=inf σ(H) be the bottom of the spectrum of H. Suppose that the infimum of ω is m>0. Then it is shown that σess(H)=[E+m, ∞). In particular the existence of the ground state of H can be proven.

本文言語英語
ページ(範囲)330-349
ページ数20
ジャーナルJournal of Mathematical Analysis and Applications
437
1
DOI
出版ステータス出版済み - 5 1 2016

All Science Journal Classification (ASJC) codes

  • 分析
  • 応用数学

フィンガープリント

「Spectrum of the semi-relativistic Pauli-Fierz model I」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル