Strong feasibility of the dual problem of linear matrix inequality for H output feedback control problem

Hayato Waki, Noboru Sebe

    研究成果: 著書/レポートタイプへの貢献会議での発言

    1 引用 (Scopus)

    抜粋

    Strong feasibility (a.k.a. strict feasibility) of the dual problem of a given linear matrix inequality (LMI) is an important property to guarantee the existence of an optimal solution of the LMI problem. In particular, the LMI problem may not have any optimal solutions if the dual is not strongly feasible. This implies that the computed solutions by SDP solvers may be meaningless and useless for designing the controllers of H output feedback control problems. The facial reduction is a tool to analyze and reduce such non-strongly feasible problems. We introduce the strong feasibility of the dual and facial reduction and provide the necessary and sufficient condition on the strong feasibility. Furthermore, we reveal that the condition is closely related to invariant zeros in the plant.

    元の言語英語
    ホスト出版物のタイトルSICE ISCS 2018 - 2018 SICE International Symposium on Control Systems
    出版者Institute of Electrical and Electronics Engineers Inc.
    ページ47-53
    ページ数7
    ISBN(電子版)9784907764586
    DOI
    出版物ステータス出版済み - 4 2 2018
    イベント2018 SICE International Symposium on Control Systems, SICE ISCS 2018 - Tokyo, 日本
    継続期間: 3 9 20183 11 2018

    出版物シリーズ

    名前SICE ISCS 2018 - 2018 SICE International Symposium on Control Systems
    2018-January

    その他

    その他2018 SICE International Symposium on Control Systems, SICE ISCS 2018
    日本
    Tokyo
    期間3/9/183/11/18

    All Science Journal Classification (ASJC) codes

    • Process Chemistry and Technology
    • Energy Engineering and Power Technology
    • Electrical and Electronic Engineering
    • Control and Optimization

    フィンガープリント Strong feasibility of the dual problem of linear matrix inequality for H<sub>∞</sub> output feedback control problem' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Waki, H., & Sebe, N. (2018). Strong feasibility of the dual problem of linear matrix inequality for H output feedback control problem. : SICE ISCS 2018 - 2018 SICE International Symposium on Control Systems (pp. 47-53). (SICE ISCS 2018 - 2018 SICE International Symposium on Control Systems; 巻数 2018-January). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.23919/SICEISCS.2018.8330155