Study on thermal stress in a silicon ingot during a unidirectional solidification process

X. J. Chen, S. Nakano, L. J. Liu, K. Kakimoto

研究成果: Contribution to journalArticle

68 引用 (Scopus)

抜粋

A transient global model was used to obtain the solution of a thermal field within the entire furnace during a unidirectional solidification process for photovoltaics. The melt-solid interface shape was obtained by a dynamic interface tracking method. The thermal stress distribution in the silicon ingot was solved using the displacement-based thermo-elastic stress model. Furthermore, several different melt-solid interface shapes were obtained by using different growth velocities, and then the thermal stresses for different solidification times were compared. The simulation results suggested that the crucible constraint should be reduced and a longer solidification time should be used for growing a silicon ingot with low thermal stress and low dislocation density.

元の言語英語
ページ(範囲)4330-4335
ページ数6
ジャーナルJournal of Crystal Growth
310
発行部数19
DOI
出版物ステータス出版済み - 9 15 2008

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Inorganic Chemistry
  • Materials Chemistry

フィンガープリント Study on thermal stress in a silicon ingot during a unidirectional solidification process' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用